Pheochromocytomas and Paragangliomas: Genetics and Pathophysiology

Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Pheochromocytomas and paragangliomas are rare tumors of the autonomic nervous system. These tumors are associated with high morbidity and mortality from hormonal hypersecretion, mass effect, and metastatic disease. Metastatic pheochromocytomas and paragangliomas are associated with a 50% 5-year survival rate, and currently, there is no cure for widespread disease. Up to 40% of pheochromocytomas and paragangliomas are associated with a hereditary mutation in one of the many susceptibility genes involved in a variety of cancer syndromes. Between the germline and somatic genetic mutations identified to date, at least 60% of tumors have a known driver of tumorigenesis. Despite the extensive knowledge of the tumor genetics, very little is known about the pathogenesis of malignant transformation.

Keywords

Pheochromocytoma Paraganglioma Genetics Germline Somatic 

Notes

Acknowledgements

LF is supported by the American Cancer Society Mentored Research Scholar Grant MRSG-15-063-01-TBG.

References

  1. 1.
    DeLellis RA, Lloyd RV, Heitz PU, Eng C, (Eds). World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. Ronald A. DeLellis RVL, Philipp U. Heitz, Charis Eng, editor. Lyon, France: IARC Press; 2004.Google Scholar
  2. 2.
    Sutton MG, Sheps SG, Lie JT. Prevalence of clinically unsuspected pheochromocytoma. Review of a 50-year autopsy series. Mayo Clin Proc. 1981;56(6):354–60.PubMedGoogle Scholar
  3. 3.
    Arnaldi G, Boscaro M. Adrenal incidentaloma. Best Pract Res Clin Endocrinol Metab. 2012;26(4):405–19.PubMedCrossRefGoogle Scholar
  4. 4.
    Musella M, Conzo G, Milone M, Corcione F, Belli G, De Palma M, et al. Preoperative workup in the assessment of adrenal incidentalomas: outcome from 282 consecutive laparoscopic adrenalectomies. BMC Surg. 2013;13:57.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wehrwein EA, Orer HS, Barman SM. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol. 2016;6(3):1239–78.PubMedCrossRefGoogle Scholar
  6. 6.
    Lumb R, Schwarz Q. Sympathoadrenal neural crest cells: the known, unknown and forgotten? Develop Growth Differ. 2015;57(2):146–57.CrossRefGoogle Scholar
  7. 7.
    Kronenberg H, Williams RH. Williams textbook of endocrinology. 11thth ed. Philadelphia: Saunders/Elsevier; 2008. xix.Google Scholar
  8. 8.
    Kopetschke R, Slisko M, Kilisli A, Tuschy U, Wallaschofski H, Fassnacht M, et al. Frequent incidental discovery of phaeochromocytoma: data from a German cohort of 201 phaeochromocytoma. Eur J Endocrinol. 2009;161(2):355–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Mannelli M, Ianni L, Cilotti A, Conti A. Pheochromocytoma in Italy: a multicentric retrospective study. Eur J Endocrinol. 1999;141(6):619–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Wachtel H, Cerullo I, Bartlett EK, Roses RE, Cohen DL, Kelz RR, et al. Clinicopathologic characteristics of incidentally identified pheochromocytoma. Ann Surg Oncol. 2015;22(1):132–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Prejbisz A, Lenders JW, Eisenhofer G, Januszewicz A. Cardiovascular manifestations of phaeochromocytoma. J Hypertens. 2011;29(11):2049–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Giavarini A, Chedid A, Bobrie G, Plouin PF, Hagege A, Amar L. Acute catecholamine cardiomyopathy in patients with phaeochromocytoma or functional paraganglioma. Heart. 2013;99(19):1438–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, Rich T, et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab. 2011;96(3):717–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Kimura N, Watanabe T, Noshiro T, Shizawa S, Miura Y. Histological grading of adrenal and extra-adrenal pheochromocytomas and relationship to prognosis: a clinicopathological analysis of 116 adrenal pheochromocytomas and 30 extra-adrenal sympathetic paragangliomas including 38 malignant tumors. Endocr Pathol. 2005;16(1):23–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Thompson LD. Pheochromocytoma of the adrenal gland scaled score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol. 2002;26(5):551–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu D, Tischler AS, Lloyd RV, DeLellis RA, de Krijger R, van Nederveen F, et al. Observer variation in the application of the Pheochromocytoma of the adrenal gland scaled score. Am J Surg Pathol. 2009;33(4):599–608.PubMedCrossRefGoogle Scholar
  17. 17.
    Kimura N, Takayanagi R, Takizawa N, Itagaki E, Katabami T, Kakoi N, et al. Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr Relat Cancer. 2014;21(3):405–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Fishbein L, Merrill S, Fraker DL, Cohen DL, Nathanson KL. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol. 2013;20(5):1444–50.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Eisenhofer G, Lenders JW, Siegert G, Bornstein SR, Friberg P, Milosevic D, et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer. 2012;48(11):1739–49.PubMedCrossRefGoogle Scholar
  20. 20.
    Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol. 2015;11(2):101–11.PubMedCrossRefGoogle Scholar
  21. 21.
    American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol. 2003;21(12):2397–406.Google Scholar
  22. 22.
    Robson ME, Storm CD, Weitzel J, Wollins DS, Offit K. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2010;28(5):893–901.PubMedCrossRefGoogle Scholar
  23. 23.
    Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44(2):81–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Yap YS, McPherson JR, Ong CK, Rozen SG, Teh BT, Lee AS, et al. The NF1 gene revisited - from bench to bedside. Oncotarget. 2014;5(15):5873–92.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Neurofibromatosis. Conference statement. National Institutes of Health consensus development conference. Arch Neurol 1988;45(5):575–578.Google Scholar
  27. 27.
    Walther MM, Herring J, Enquist E, Keiser HR, Linehan WM. Von Recklinghausen's disease and pheochromocytomas. J Urol. 1999;162(5):1582–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Zinnamosca L, Petramala L, Cotesta D, Marinelli C, Schina M, Cianci R, et al. Neurofibromatosis type 1 (NF1) and pheochromocytoma: prevalence, clinical and cardiovascular aspects. Arch Dermatol Res. 2011;303(5):317–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Gruber LM, Erickson D, Babovic-Vuksanovic D, Thompson GB, Young WF Jr, Bancos I. Pheochromocytoma and Paraganglioma in patients with Neurofibromatosis type 1. Clin Endocrinol. 2016;86(1):141–9.CrossRefGoogle Scholar
  30. 30.
    Bausch B, Borozdin W, Neumann HP. Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. N Engl J Med. 2006;354(25):2729–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Maher ER, Iselius L, Yates JR, Littler M, Benjamin C, Harris R, et al. Von Hippel-Lindau disease: a genetic study. J Med Genet. 1991;28(7):443–7.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kaelin WG Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002;2(9):673–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Min JH, Yang H, Ivan M, Gertler F, Kaelin WG Jr, Pavletich NP. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science. 2002;296(5574):1886–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Maher ER, Neumann HP, Richard S. Von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19(6):617–23.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Delman KA, Shapiro SE, Jonasch EW, Lee JE, Curley SA, Evans DB, et al. Abdominal visceral lesions in von Hippel-Lindau disease: incidence and clinical behavior of pancreatic and adrenal lesions at a single center. World J Surg. 2006;30(5):665–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen F, Slife L, Kishida T, Mulvihill J, Tisherman SE, Zbar B. Genotype-phenotype correlation in von Hippel-Lindau disease: identification of a mutation associated with VHL type 2A. J Med Genet. 1996;33(8):716–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Forman JR, Worth CL, Bickerton GR, Eisen TG, Blundell TL. Structural bioinformatics mutation analysis reveals genotype-phenotype correlations in von Hippel-Lindau disease and suggests molecular mechanisms of tumorigenesis. Proteins. 2009;77(1):84–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Glavac D, Neumann HP, Wittke C, Jaenig H, Masek O, Streicher T, et al. Mutations in the VHL tumor suppressor gene and associated lesions in families with von Hippel-Lindau disease from central Europe. Hum Genet. 1996;98(3):271–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Maher ER, Webster AR, Richards FM, Green JS, Crossey PA, Payne SJ, et al. Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL gene mutations. J Med Genet. 1996;33(4):328–32.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Rechsteiner MP, von Teichman A, Nowicka A, Sulser T, Schraml P, Moch H. VHL Gene mutations and their effects on hypoxia inducible factor HIF{alpha}: identification of potential driver and passenger mutations. Cancer Res. 2011;71(16):5500–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Zbar B, Kishida T, Chen F, Schmidt L, Maher ER, Richards FM, et al. Germline mutations in the von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat. 1996;8(4):348–57.PubMedCrossRefGoogle Scholar
  42. 42.
    Ong KR, Woodward ER, Killick P, Lim C, Macdonald F, Maher ER. Genotype-phenotype correlations in von Hippel-Lindau disease. Hum Mutat. 2007;28(2):143–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, et al. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet. 2001;10(10):1029–38.PubMedCrossRefGoogle Scholar
  44. 44.
    Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin WG Jr. Von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet. 2001;10(10):1019–27.PubMedCrossRefGoogle Scholar
  45. 45.
    Dahia PL. Transcription association of VHL and SDH mutations link hypoxia and oxidoreductase signals in pheochromocytomas. Ann N Y Acad Sci. 2006;1073:208–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Boedeker CC, Erlic Z, Richard S, Kontny U, Gimenez-Roqueplo AP, Cascon A, et al. Head and neck paragangliomas in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 2009;94(6):1938–44.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gaal J, van Nederveen FH, Erlic Z, Korpershoek E, Oldenburg R, Boedeker CC, et al. Parasympathetic paragangliomas are part of the von Hippel-Lindau syndrome. J Clin Endocrinol Metab. 2009;94(11):4367–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Eisenhofer G, Huynh TT, Pacak K, Brouwers FM, Walther MM, Linehan WM, et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer. 2004;11(4):897–911.PubMedCrossRefGoogle Scholar
  49. 49.
    Eisenhofer G, Walther MM, Huynh TT, Li ST, Bornstein SR, Vortmeyer A, et al. Pheochromocytomas in von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 display distinct biochemical and clinical phenotypes. J Clin Endocrinol Metab. 2001;86(5):1999–2008.PubMedCrossRefGoogle Scholar
  50. 50.
    Frantzen C, Klasson TD, Links TP, Giles RH. Von Hippel-Lindau Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, editors. GeneReviews(R). Seattle, WA: University of Washington; 1993.Google Scholar
  51. 51.
    Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor ret. Nature. 1994;367(6461):380–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Wohllk N, Schweizer H, Erlic Z, Schmid KW, Walz MK, Raue F, et al. Multiple endocrine neoplasia type 2. Best Pract Res Clin Endocrinol Metab. 2010;24(3):371–87.PubMedCrossRefGoogle Scholar
  53. 53.
    Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Eng C, Clayton D, Schuffenecker I, Lenoir G, Cote G, Gagel RF, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996;276(19):1575–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Pomares FJ, Canas R, Rodriguez JM, Hernandez AM, Parrilla P, Tebar FJ. Differences between sporadic and multiple endocrine neoplasia type 2A phaeochromocytoma. Clin Endocrinol. 1998;48(2):195–200.CrossRefGoogle Scholar
  56. 56.
    Modigliani E, Vasen HM, Raue K, Dralle H, Frilling A, Gheri RG, et al. Pheochromocytoma in multiple endocrine neoplasia type 2: European study. The Euromen study group. J Intern Med. 1995;238(4):363–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Eisenhofer G, Lenders JW, Timmers H, Mannelli M, Grebe SK, Hofbauer LC, et al. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin Chem. 2011;57(3):411–20.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001;69(1):49–54.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287(5454):848–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. 2010;19(15):3011–20.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325(5944):1139–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet. 2000;26(3):268–70.PubMedCrossRefGoogle Scholar
  63. 63.
    Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77–85.PubMedCrossRefGoogle Scholar
  64. 64.
    Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26(12):1326–38.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23(6):739–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14(15):2231–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Burnichon N, Rohmer V, Amar L, Herman P, Leboulleux S, Darrouzet V, et al. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab. 2009;94(8):2817–27.PubMedCrossRefGoogle Scholar
  68. 68.
    Cascon A, Pita G, Burnichon N, Landa I, Lopez-Jimenez E, Montero-Conde C, et al. Genetics of pheochromocytoma and paraganglioma in Spanish patients. J Clin Endocrinol Metab. 2009;94(5):1701–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Mannelli M, Castellano M, Schiavi F, Filetti S, Giacche M, Mori L, et al. Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab. 2009;94(5):1541–7.PubMedCrossRefGoogle Scholar
  70. 70.
    van Hulsteijn LT, Dekkers OM, Hes FJ, Smit JW, Corssmit EP. Risk of malignant paraganglioma in SDHB-mutation and SDHD-mutation carriers: a systematic review and meta-analysis. J Med Genet. 2012;49(12):768–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Hirawake H, Taniwaki M, Tamura A, Amino H, Tomitsuka E, Kita K. Characterization of the human SDHD gene encoding the small subunit of cytochrome b (cybS) in mitochondrial succinate-ubiquinone oxidoreductase. Biochim Biophys Acta. 1999;1412(3):295–300.PubMedCrossRefGoogle Scholar
  72. 72.
    Hirawake H, Taniwaki M, Tamura A, Kojima S, Kita K. Cytochrome b in human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of the components in liver mitochondria and chromosome assignment of the genes for the large (SDHC) and small (SDHD) subunits to 1q21 and 11q23. Cytogenet Cell Genet. 1997;79(1–2):132–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Bayley JP, Oldenburg RA, Nuk J, Hoekstra AS, van der Meer CA, Korpershoek E, et al. Paraganglioma and pheochromocytoma upon maternal transmission of SDHD mutations. BMC Med Genet. 2014;15:111.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Pigny P, Vincent A, Cardot Bauters C, Bertrand M, de Montpreville VT, Crepin M, et al. Paraganglioma after maternal transmission of a succinate dehydrogenase gene mutation. J Clin Endocrinol Metab. 2008;93(5):1609–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;31(1):41–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Yeap PM, Tobias ES, Mavraki E, Fletcher A, Bradshaw N, Freel EM, et al. Molecular analysis of pheochromocytoma after maternal transmission of SDHD mutation elucidates mechanism of parent-of-origin effect. J Clin Endocrinol Metab. 2011;96(12):E2009–13.PubMedCrossRefGoogle Scholar
  77. 77.
    Benn DE, Gimenez-Roqueplo AP, Reilly JR, Bertherat J, Burgess J, Byth K, et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab. 2006;91(3):827–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Pasini B, Stratakis CA. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med. 2009;266(1):19–42.PubMedCrossRefGoogle Scholar
  79. 79.
    Else T, Marvin ML, Everett JN, Gruber SB, Arts HA, Stoffel EM, et al. The clinical phenotype of SDHC-associated hereditary paraganglioma syndrome (PGL3). J Clin Endocrinol Metab. 2014;99(8):E1482–6.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Peczkowska M, Cascon A, Prejbisz A, Kubaszek A, Cwikla BJ, Furmanek M, et al. Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutation. Nat Clin Pract Endocrinol Metab. 2008;4(2):111–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Schiavi F, Boedeker CC, Bausch B, Peczkowska M, Gomez CF, Strassburg T, et al. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA. 2005;294(16):2057–63.PubMedCrossRefGoogle Scholar
  82. 82.
    Parfait B, Chretien D, Rotig A, Marsac C, Munnich A, Rustin P. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet. 2000;106(2):236–43.PubMedCrossRefGoogle Scholar
  83. 83.
    Horvath R, Abicht A, Holinski-Feder E, Laner A, Gempel K, Prokisch H, et al. Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). J Neurol Neurosurg Psychiatry. 2006;77(1):74–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L, et al. SDHA immunohistochemistry detects Germline SDHA Gene mutations in apparently sporadic Paragangliomas and Pheochromocytomas. J Clin Endocrinol Metab. 2011;96(9):E1472–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010;11(4):366–72.PubMedCrossRefGoogle Scholar
  86. 86.
    Kunst HP, Rutten MH, de Monnink JP, Hoefsloot LH, Timmers HJ, Marres HA, et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res. 2011;17(2):247–54.PubMedCrossRefGoogle Scholar
  87. 87.
    Evenepoel L, Papathomas TG, Krol N, Korpershoek E, de Krijger RR, Persu A, et al. Toward an improved definition of the genetic and tumor spectrum associated with SDH germ-line mutations. Genet Med. 2014;17(8):610–20.PubMedCrossRefGoogle Scholar
  88. 88.
    Kuroda N, Yorita K, Nagasaki M, Harada Y, Ohe C, Jeruc J, et al. Review of succinate dehydrogenase-deficient renal cell carcinoma with focus on clinical and pathobiological aspects. Pol J Pathol. 2016;67(1):3–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol. 2011;35(11):1712–21.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Xekouki P, Stratakis CA. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer. 2012;19(6):C33–40.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cascon A, Comino-Mendez I, Curras-Freixes M, de Cubas AA, Contreras L, Richter S, et al. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J Natl Cancer Inst. 2015;107(5): pii.Google Scholar
  92. 92.
    Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C, Galateau-Salle F, et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med. 2008;359(25):2685–92.PubMedCrossRefGoogle Scholar
  93. 93.
    Schlisio S, Kenchappa RS, Vredeveld LC, George RE, Stewart R, Greulich H, et al. The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 2008;22(7):884–93.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES, et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet. 2010;42(3):229–33.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Neumann HP, Sullivan M, Winter A, Malinoc A, Hoffmann MM, Boedeker CC, et al. Germline mutations of the TMEM127 Gene in patients with Paraganglioma of head and neck and Extraadrenal abdominal sites. J Clin Endocrinol Metab. 2011;96(9):E1479–82.Google Scholar
  96. 96.
    Yao L, Schiavi F, Cascon A, Qin Y, Inglada-Perez L, King EE, et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA. 2010;304(23):2611–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Qin Y, Deng Y, Ricketts CJ, Srikantan S, Wang E, Maher ER, et al. The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. Hum Mol Genet. 2014;23(9):2428–39.PubMedCrossRefGoogle Scholar
  98. 98.
    Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, Leton R, et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43(7):663–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Cascon A, Robledo M. MAX and MYC: a heritable breakup. Cancer Res. 2012;72(13):3119–24.PubMedCrossRefGoogle Scholar
  100. 100.
    Blackwood EM, Luscher B, Eisenman RN. Myc and max associate in vivo. Genes Dev. 1992;6(1):71–80.PubMedCrossRefGoogle Scholar
  101. 101.
    Burnichon N, Cascon A, Schiavi F, Morales NP, Comino-Mendez I, Abermil N, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res. 2012;18(10):2828–37.PubMedCrossRefGoogle Scholar
  102. 102.
    Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Castro-Vega LJ, Buffet A, De Cubas AA, Cascon A, Menara M, Khalifa E, et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23(9):2440–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Clark GR, Sciacovelli M, Gaude E, Walsh DM, Kirby G, Simpson MA, et al. Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab. 2014;99(10):E2046–50.PubMedCrossRefGoogle Scholar
  105. 105.
    Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR, McMullin MF, et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med. 2008;358(2):162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Comino-Mendez I, de Cubas AA, Bernal C, Alvarez-Escola C, Sanchez-Malo C, Ramirez-Tortosa CL, et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet. 2013;22(11):2169–76.PubMedCrossRefGoogle Scholar
  107. 107.
    Lorenzo FR, Yang C, Ng Tang Fui M, Vankayalapati H, Zhuang Z, Huynh T, et al. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med (Berl). 2013;91(4):507–12.CrossRefGoogle Scholar
  108. 108.
    Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med. 2012;367(10):922–30.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Welander J, Andreasson A, Brauckhoff M, Backdahl M, Larsson C, Gimm O, et al. Frequent EPAS1/HIF2alpha exons 9 and 12 mutations in non-familial pheochromocytoma. Endocr Relat Cancer. 2014;21(3):495–504.PubMedCrossRefGoogle Scholar
  110. 110.
    Crona J, Delgado Verdugo A, Maharjan R, Stalberg P, Granberg D, Hellman P, et al. Somatic mutations in H-RAS in sporadic Pheochromocytoma and Paraganglioma identified by Exome sequencing. J Clin Endocrinol Metab. 2013;98(7):E1266–71.PubMedCrossRefGoogle Scholar
  111. 111.
    Oudijk L, de Krijger RR, Rapa I, Beuschlein F, de Cubas AA, Dei Tos AP, et al. H-RAS mutations are restricted to sporadic pheochromocytomas lacking specific clinical or pathological features: data from a multi-institutional series. J Clin Endocrinol Metab. 2014;99(7):E1376–80.PubMedCrossRefGoogle Scholar
  112. 112.
    Burnichon N, Buffet A, Parfait B, Letouze E, Laurendeau I, Loriot C, et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet. 2012;21(26):5397–405.PubMedCrossRefGoogle Scholar
  113. 113.
    Burnichon N, Vescovo L, Amar L, Libe R, de Reynies A, Venisse A, et al. Integrative genomic analysis reveals somatic mutations in Pheochromocytoma and Paraganglioma. Hum Mol Genet. 2011;20(20):3974–85.PubMedCrossRefGoogle Scholar
  114. 114.
    Welander J, Larsson C, Backdahl M, Hareni N, Sivler T, Brauckhoff M, et al. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Hum Mol Genet. 2012;21(26):5406–16.PubMedCrossRefGoogle Scholar
  115. 115.
    Toledo RA, Qin Y, Cheng ZM, Gao Q, Iwata S, Silva GM, et al. Recurrent mutations of chromatin-remodeling genes and kinase receptors in Pheochromocytomas and Paragangliomas. Clin Cancer Res. 2016;22(9):2301–10.PubMedCrossRefGoogle Scholar
  116. 116.
    Stenman A, Juhlin CC, Haglund F, Brown TC, Clark VE, Svahn F, et al. Absence of KMT2D/MLL2 mutations in abdominal paraganglioma. Clin Endocrinol. 2016;84(4):632–4.CrossRefGoogle Scholar
  117. 117.
    Juhlin CC, Stenman A, Haglund F, Clark VE, Brown TC, Baranoski J, et al. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. Genes Chromosomes Cancer. 2015;54(9):542–54.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ford DJ, Dingwall AK. The cancer COMPASS: navigating the functions of MLL complexes in cancer. Cancer Genet. 2015;208(5):178–91.PubMedCrossRefGoogle Scholar
  119. 119.
    Fishbein L, Khare S, Wubbenhorst B, DeSloover D, D'Andrea K, Merrill S, et al. Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat Commun. 2015;6:6140.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Iwase S, Xiang B, Ghosh S, Ren T, Lewis PW, Cochrane JC, et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nat Struct Mol Biol. 2011;18(7):769–76.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A. 2010;107(32):14075–80.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Jiao Y, Killela PJ, Reitman ZJ, Rasheed AB, Heaphy CM, de Wilde RF, et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget. 2012;3(7):709–22.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kannan K, Inagaki A, Silber J, Gorovets D, Zhang J, Kastenhuber ER, et al. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget. 2012;3(10):1194–203.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM, et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012;124(5):615–25.PubMedCrossRefGoogle Scholar
  126. 126.
    Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. 2013;45(3):279–84.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, de Lange T, et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 2012;8(7):e1002772.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Papathomas TG, Oudijk L, Zwarthoff EC, Post E, Duijkers FA, van Noesel MM, et al. Telomerase reverse transcriptase promoter mutations in tumors originating from the adrenal gland and extra-adrenal paraganglia. Endocr Relat Cancer. 2014;21(4):653–61.PubMedCrossRefGoogle Scholar
  130. 130.
    Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1(1):72–80.PubMedCrossRefGoogle Scholar
  131. 131.
    Lopez-Jimenez E, Gomez-Lopez G, Leandro-Garcia LJ, Munoz I, Schiavi F, Montero-Conde C, et al. Research resource: transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol. 2010;24(12):2382–91.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 2013;3(6):648–57.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Bayley JP, van Minderhout I, Hogendoorn PC, Cornelisse CJ, van der Wal A, Prins FA, et al. Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma. PLoS One. 2009;4(11):e7987.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Piruat JI, Pintado CO, Ortega-Saenz P, Roche M, Lopez-Barneo J. The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Mol Cell Biol. 2004;24(24):10933–40.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet. 1994;7(3):353–61.PubMedCrossRefGoogle Scholar
  136. 136.
    Smith-Hicks CL, Sizer KC, Powers JF, Tischler AS, Costantini F. C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J. 2000;19(4):612–22.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Urosevic J, Sauzeau V, Soto-Montenegro ML, Reig S, Desco M, Wright EM, et al. Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome. Proc Natl Acad Sci U S A. 2011;108(12):5015–20.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976;73(7):2424–8.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Martin TF, Grishanin RN. PC12 cells as a model for studies of regulated secretion in neuronal and endocrine cells. Methods Cell Biol. 2003;71:267–86.PubMedCrossRefGoogle Scholar
  140. 140.
    Powers JF, Evinger MJ, Tsokas P, Bedri S, Alroy J, Shahsavari M, et al. Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice. Cell Tissue Res. 2000;302(3):309–20.PubMedCrossRefGoogle Scholar
  141. 141.
    Ghayee HK, Bhagwandin VJ, Stastny V, Click A, Ding LH, Mizrachi D, et al. Progenitor cell line (hPheo1) derived from a human pheochromocytoma tumor. PLoS One. 2013;8(6):e65624.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Endocrinology, Metabolism and Diabetes, Division of Biomedical Informatics and Personalized MedicineDepartment of Medicine, University of Colorado School of MedicineAuroraUSA

Personalised recommendations