Skip to main content

Genetics and Pathophysiology of Congenital Adrenal Hyperplasia

  • Chapter
  • First Online:
Book cover Adrenal Disorders

Part of the book series: Contemporary Endocrinology ((COE))

  • 2044 Accesses

Abstract

The congenital adrenal hyperplasias are a group of autosomal recessive disorder. The most common form is 21-hydroxylase deficiency (21-OHD) associated with mutations in the 21-hydroxylase (CYP21A2) gene. The manifestations of 21-OHD range from the classic forms presenting in the neonatal period to milder forms presenting in adulthood. The pathophysiology is due to loss of function mutations leading to cortisol deficiency, increased ACTH secretion, and subsequent increased adrenal androgen secretion. Optimal care for patients with 21-OHD spans their lifetime with the involvement of pediatric and adult healthcare providers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

17-OHP:

17-hydroxyprogesterone

21-OHD:

CAH due to 21-hydroxylase deficiency

ACTH:

Adrenocorticotropic hormone

CAH:

Congenital adrenal hyperplasia

CRH:

Corticotropin-releasing hormone

DHEA:

Dehydroepiandrosterone

DHEAS:

Dehydroepiandrosterone sulfate

NC-21-OHD:

Nonclassic 21-hydroxylase deficiency

SULT2A1:

Steroid sulfotransferase

References

  1. Thil'en A, Nordenström A, Hagenfeldt L, von Döbeln U, Guthenberg C, Larsson A. Benefits of neonatal screening for congenital adrenal hyperplasia (21-hydroxylase deficiency) in Sweden. Pediatrics. 1998;101:E11.

    Article  PubMed  Google Scholar 

  2. Therrell BL Jr, Berenbaum SA, Manter-Kapanke V, Simmank J, Korman K, Prentice L, Gonzalez J, Gunn S. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics. 1998;101(4 Pt 1):583–90.

    Article  PubMed  Google Scholar 

  3. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet. 1985;37:650–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller WL. Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol. 2013;379(1–2):62–73.

    Article  CAS  PubMed  Google Scholar 

  5. Wilson JD, Auchus RJ, Leihy MW, Guryev OL, Estabrook RW, Osborn SM, Shaw G, Renfree MB. 5alpha-androstane-3alpha,17beta-diol is formed in tammar wallaby pouch young testes by a pathway involving 5alpha-pregnane-3alpha,17alpha-diol-20-one as a key intermediate. Endocrinology. 2003;144:575–80.

    Article  CAS  PubMed  Google Scholar 

  6. Kamrath C, Hochberg Z, Hartmann MF, Remer T, Wudy SA. Increased activation of the alternative "backdoor" pathway in patients with 21-hydroxylase deficiency: evidence from urinary steroid hormone analysis. J Clin Endocrinol Metab. 2012;97:E367–75.

    Article  CAS  PubMed  Google Scholar 

  7. Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab. 2004;15:432–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kamrath C, Hartmann MF, Wudy SA. Androgen synthesis in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm Metab Res. 2013;45:86–91.

    Article  CAS  PubMed  Google Scholar 

  9. Turcu AF, Rege J, Chomic R, Liu J, Nishimoto HK, Else T, Moraitis AG, Palapattu GS, Rainey WE, Auchus RJ. Profiles of 21-carbon steroids in 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2015;100:2283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pretorius E, Arlt W, Storbeck KH. A new Dawn for androgens: novel lessons from 11-oxygenated C19 steroids. Mol Cell Endocrinol. 2016; doi:10.1016/j.mce.2016.08.014.

  11. Turcu AF, Nanba AT, Chomic R, Upadhyay SK, Giordano T, Shields JJ, Merke DP, Rainey W, Auchus R. Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. Eur J Endocrinol. 2016;174:601–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rege J, Nakamura Y, Satoh F, Morimoto R, Kennedy MR, Layman LC, Honma S, Sasano H, Rainey WE. Liquid chromatography-tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation. J Clin Endocrinol Metab. 2013;98:1182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arlt W, Allolio B. Adrenal insufficiency. Lancet. 2003;361:1881–93.

    Article  CAS  PubMed  Google Scholar 

  14. White PC, Bachega TA. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: from birth to adulthood. Semin Reprod Med. 2012;30:400–9.

    Article  CAS  PubMed  Google Scholar 

  15. Mooij CF, Parajes S, Pijnenburg-Kleizen KJ, Arlt W, Krone N, Claahsen-van der Grinten HL. Influence of 17-hydroxyprogesterone, progesterone and sex steroids on mineralocorticoid receptor transactivation in congenital adrenal hyperplasia. Horm Res Paediatr. 2015;

    Google Scholar 

  16. Merke DP, Chrousos GP, Eisenhofer G, Weise M, Keil MF, Rogol AD, Van Wyk JJ, Bornstein SR. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N Engl J Med. 2000;343:1362–8.

    Article  CAS  PubMed  Google Scholar 

  17. Moran C, Azziz R, Carmina E, et al. 21-hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: a multicenter study. Am J Obstet Gynecol. 2000;183:1468.

    Article  CAS  PubMed  Google Scholar 

  18. Armengaud JB, Charkaluk ML, Trivin C, Tardy V, Bréart G, Brauner R, Chalumeau M. Precocious pubarche: distinguishing late-onset congenital adrenal hyperplasia from premature adrenarche. J Clin Endocrinol Metab. 2009;94:2835–40.

    Article  CAS  PubMed  Google Scholar 

  19. Binay C, Simsek E, Cilingir O, Yuksel Z, Kutlay O, Artan S. Prevalence of nonclassic congenital adrenal hyperplasia in Turkish children presenting with premature pubarche, hirsutism, or oligomenorrhoea. Int J Endocrinol. 2014;2014:768506.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moran C, Azziz R, Weintrob N, Witchel SF, Rohmer V, Dewailly D, Marcondes JA, Pugeat M, Speiser PW, Pignatelli D, Mendonca BB, Bachega TA, Escobar-Morreale HF, Carmina E, Fruzzetti F, Kelestimur F. Reproductive outcome of women with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. J Clin Endocrinol Metab. 2006;91:3451–6.

    Article  CAS  PubMed  Google Scholar 

  21. Bidet M, Bellanné-Chantelot C, Galand-Portier MB, Golmard JL, Tardy V, Morel Y, Clauin S, Coussieu C, Boudou P, Mowzowicz I, Bachelot A, Touraine P, Kuttenn F. Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2010;95:1182–90.

    Article  CAS  PubMed  Google Scholar 

  22. Yildiz BO, Bolour S, Woods K, Moore A, Azziz R. Visually scoring Hirsutism. Hum Reprod Update. 2010;16:51–64.

    Article  PubMed  Google Scholar 

  23. O’Driscoll JB, Anderson DC. Untreated congenital adrenal hyperplasia presenting with severe androgenic alopecia. J R Soc Med. 1993;86:229.

    PubMed  PubMed Central  Google Scholar 

  24. Huerta R, Dewailly D, Decanter C, Knochenhauer ES, Boots LR, Azziz R. Adrenocortical hyperresponsivity to adrenocorticotropic hormone: a mechanism favoring the normal production of cortisol in 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil Steril. 2000;74:329–34.

    Article  CAS  PubMed  Google Scholar 

  25. Lobo RA, Goebelsmann U. Adult manifestation of congenital adrenal hyperplasia due to incomplete 21-hydroxylase deficiency mimicking polycystic ovarian disease. Am J Obstet Gynecol. 1980;138:720–6.

    Article  CAS  PubMed  Google Scholar 

  26. Pall M, Azziz R, Beires J, Pignatelli D. The phenotype of hirsute women: a comparison of polycystic ovary syndrome and 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil Steril. 2010;94:684–9.

    Article  CAS  PubMed  Google Scholar 

  27. Escobar-Morreale HF, Sanchón R, San Millán JL. A prospective study of the prevalence of nonclassical congenital adrenal hyperplasia among women presenting with hyperandrogenic symptoms and signs. J Clin Endocrinol Metab. 2008;93:527–33.

    Article  CAS  PubMed  Google Scholar 

  28. Pignatelli D. Non-classic adrenal hyperplasia due to the deficiency of 21-hydroxylase and its relation to polycystic ovarian syndrome. Front Horm Res. 2013;40:158–70.

    Article  CAS  PubMed  Google Scholar 

  29. Oncul M, Sahmay S, Tuten A, Acikgoz AS, Gurleyen HC. May AMH levels distinguish LOCAH from PCOS among hirsute women? Eur J Obstet Gynecol Reprod Biol. 2014;178:183–7.

    Article  CAS  PubMed  Google Scholar 

  30. Nandagopal R, Sinaii N, Avila NA, Van Ryzin C, Chen W, Finkielstain GP, Mehta SP, McDonnell NB, Merke DP. Phenotypic profiling of parents with cryptic nonclassic congenital adrenal hyperplasia: findings in 145 unrelated families. Eur J Endocrinol. 2011;164:977–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghizzoni L, Virdis R, Vottero A, Cappa M, Street ME, Zampolli M, Ibañez L, Bernasconi S. Pituitary-ovarian responses to leuprolide acetate testing in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1996;81:601–6.

    CAS  PubMed  Google Scholar 

  32. Engberg H, Butwicka A, Nordenström A, Hirschberg AL, Falhammar H, Lichtenstein P, Nordenskjöld A, Frisén L, Landén M. Congenital adrenal hyperplasia and risk for psychiatric disorders in girls and women born between 1915 and 2010: a total population study. Psychoneuroendocrinology. 2015;60:195–205.

    Article  PubMed  Google Scholar 

  33. Engberg H, Möller A, Hagenfeldt K, Nordenskjöld A, Frisén L. The experience of women living with congenital adrenal hyperplasia: impact of the condition and the care given. Clin Endocrinol. 2016;85:21–8.

    Article  Google Scholar 

  34. Casteràs A, De Silva P, Rumsby G, Conway GS. Reassessing fecundity in women with classical congenital adrenal hyperplasia (CAH): normal pregnancy rate but reduced fertility rate. Clin Endocrinol. 2009;70:833–7.

    Article  Google Scholar 

  35. Pasterski V, Zucker KJ, Hindmarsh PC, Hughes IA, Acerini C, Spencer D, Neufeld S, Hines M. Increased cross-gender identification independent of gender role behavior in girls with congenital adrenal hyperplasia: results from a standardized assessment of 4- to 11-year-old children. Arch Sex Behav. 2015;44:1363–75.

    Article  PubMed  Google Scholar 

  36. Nordenskjöld A, Holmdahl G, Frisén L, Falhammar H, Filipsson H, Thorén M, Janson PO, Hagenfeldt K. Type of mutation and surgical procedure affect long-term quality of life for women with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2008;93:380–6.

    Article  PubMed  Google Scholar 

  37. Frisén L, Nordenström A, Falhammar H, Filipsson H, Holmdahl G, Janson PO, Thorén M, Hagenfeldt K, Möller A, Nordenskjöld A. Gender role behavior, sexuality, and psychosocial adaptation in women with congenital adrenal hyperplasia due to CYP21A2 deficiency. J Clin Endocrinol Metab. 2009;94:3432–9.

    Article  PubMed  Google Scholar 

  38. Kanhere M, Fuqua J, Rink R, Houk C, Mauger D, Lee PA. Psychosexual development and quality of life outcomes in females with congenital adrenal hyperplasia. Int J Pediatr Endocrinol. 2015;2015:21.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee PA, Nordenström A, Houk CP, Ahmed SF, Auchus R, Baratz A, Baratz Dalke K, Liao LM, Lin-Su K, Looijenga LH 3rd, Mazur T, Meyer-Bahlburg HF, Mouriquand P, Quigley CA, Sandberg DE, Vilain E, Witchel S, Global DSD Update Consortium. Global disorders of sex development update since 2006: perceptions, approach and care. Horm Res Paediatr. 2016;85:158–80.

    Article  CAS  PubMed  Google Scholar 

  40. Claahsen-van der Grinten HL, Dehzad F, Kamphuis-van Ulzen K, de Korte CL. Increased prevalence of testicular adrenal rest tumours during adolescence in congenital adrenal hyperplasia. Horm Res Paediatr. 2014;82:238–44.

    Article  CAS  PubMed  Google Scholar 

  41. Falhammar H, Nyström HF, Ekström U, Granberg S, Wedell A, Thorén M. Fertility, sexuality and testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia. Eur J Endocrinol. 2012;166:441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reisch N, Rottenkolber M, Greifenstein A, Krone N, Schmidt H, Reincke M, Schwarz HP, Beuschlein F. Testicular adrenal rest tumors develop independently of long-term disease control: a longitudinal analysis of 50 adult men with congenital adrenal hyperplasia due to classic 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2013;98:E1820–6.

    Article  CAS  PubMed  Google Scholar 

  43. Parajes S, Quinteiro C, Domínguez F, Loidi L. High frequency of copy number variations and sequence variants at CYP21A2 locus: implication for the genetic diagnosis of 21-hydroxylase deficiency. PLoS One. 2008;3:e2138.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen W, Xu Z, Sullivan A, Finkielstain GP, Van Ryzin C, Merke DP, McDonnell NB. Junction site analysis of chimeric CYP21A1P/CYP21A2 genes in 21-hydroxylase deficiency. Clin Chem. 2012;58:421–30.

    Article  CAS  PubMed  Google Scholar 

  45. Parker EA, Hovanes K, Germak J, Porter F, Merke DP. Maternal 21-hydroxylase deficiency and uniparental isodisomy of chromosome 6 and X results in a child with 21-hydroxylase deficiency and Klinefelter syndrome. Am J Med Genet A. 2006;140:2236–40.

    Article  PubMed  Google Scholar 

  46. Livadas S, Dracopoulou M, Dastamani A, Sertedaki A, Maniati-Christidi M, Magiakou AM, Kanaka-Gantenbein C, Chrousos GP, Dacou-Voutetakis C. The spectrum of clinical, hormonal and molecular findings in 280 individuals with nonclassical congenital adrenal hyperplasia caused by mutations of the CYP21A2 gene. Clin Endocrinol. 2015;82:543–9.

    Article  CAS  Google Scholar 

  47. Speiser PW, Knochenhauer ES, Dewailly D, Fruzzetti F, Marcondes JA, Azziz R. A multicenter study of women with nonclassical congenital adrenal hyperplasia: relationship between genotype and phenotype. Mol Genet Metab. 2000;71:527–34.

    Article  CAS  PubMed  Google Scholar 

  48. Bidet M, Bellanné-Chantelot C, Galand-Portier MB, Tardy V, Billaud L, Laborde K, Coussieu C, Morel Y, Vaury C, Golmard JL, Claustre A, Mornet E, Chakhtoura Z, Mowszowicz I, Bachelot A, Touraine P, Kuttenn F. Clinical and molecular characterization of a cohort of 161 unrelated women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency and 330 family members. J Clin Endocrinol Metab. 2009;94:1570–8.

    Article  CAS  PubMed  Google Scholar 

  49. Barbaro M, Soardi FC, Östberg LJ, Persson B, de Mello MP, Wedell A, Lajic S. In vitro functional studies of rare CYP21A2 mutations and establishment of an activity gradient for nonclassic mutations improve phenotype predictions in congenital adrenal hyperplasia. Clin Endocrinol. 2015;82:37–44.

    Article  CAS  Google Scholar 

  50. Nordenström A, Thilén A, Hagenfeldt L, Larsson A, Wedell A. Genotyping is a valuable diagnostic complement to neonatal screening for congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1999;84:1505–9.

    PubMed  Google Scholar 

  51. Chen W, Perritt AF, Morissette R, Dreiling JL, Bohn MF, Mallappa A, Xu Z, Quezado M, Merke DP. Ehlers-Danlos syndrome caused by Biallelic TNXB variants in patients with congenital adrenal hyperplasia. Hum Mutat. 2016;37:893–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Witchel SF, Nayak S, Suda-Hartman M, Lee PA. Newborn screening for 21-hydroxylase deficiency: results of CYP21 molecular genetic analysis. J Pediatr. 1997;131:328–31.

    Article  CAS  PubMed  Google Scholar 

  53. Escobar-Morreale HF, Sanchon R, San Millan JL. A prospective study of the prevalence of nonclassical congenital adrenal hyperplasia among women presenting with hyperandrogenic symptoms and signs. J Clin Endocrinol Metab. 2008;93:527–33.

    Article  CAS  PubMed  Google Scholar 

  54. Trapp CM, Speiser PW, Oberfield SE. Congenital adrenal hyperplasia: an update in children. Curr Opin Endocrinol Diabetes Obes. 2011;18:166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pang S, Hotchkiss J, Drash AL, Levine LS, New MI. Microfilter paper method for 17 alpha-hydroxyprogesterone radioimmunoassay: its application for rapid screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1977;45:1003–8.

    Article  CAS  PubMed  Google Scholar 

  56. Heather NL, Seneviratne SN, Webster D, Derraik JG, Jefferies C, Carll J, Jiang Y, Cutfield WS, Hofman PL. Newborn screening for congenital adrenal hyperplasia in New Zealand, 1994-2013. J Clin Endocrinol Metab. 2015;100:1002–8.

    Article  PubMed  Google Scholar 

  57. Kamrath C, Hartmann MF, Boettcher C, Wudy SA. Reduced activity of 11β-hydroxylase accounts for elevated 17α-hydroxyprogesterone in preterms. J Pediatr. 2014;165:280–4.

    Article  CAS  PubMed  Google Scholar 

  58. Gidlöf S, Falhammar H, Thilén A, von Döbeln U, Ritzén M, Wedell A, Nordenström A. One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol. 2013;1:35–42.

    Article  PubMed  Google Scholar 

  59. Witchel SF. The medical home concept and congenital adrenal hyperplasia: a comfortable habitat! Int J Pediatr Endocrinol. 2010;2010:561526.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Muthusamy K, Elamin MB, Smushkin G, Murad MH, Lampropulos JF, Elamin KB, Abu Elnour NO, Gallegos-Orozco JF, Fatourechi MM, Agrwal N, Lane MA, Albuquerque FN, Erwin PJ, Montori VM. Clinical review: adult height in patients with congenital adrenal hyperplasia: a systematic review and metaanalysis. J Clin Endocrinol Metab. 2010;95:4161–72.

    Article  CAS  PubMed  Google Scholar 

  61. Auchus RJ. Management considerations for the adult with congenital adrenal hyperplasia. Mol Cell Endocrinol. 2015;408:190–7.

    Article  CAS  PubMed  Google Scholar 

  62. Trakakis E, Dracopoulou-Vabouli M, Dacou-Voutetakis C, Basios G, Chrelias C, Kassanos D. Infertility reversed by glucocorticoids and full-term pregnancy in a couple with previously undiagnosed nonclassic congenital adrenal hyperplasia. Fertil Steril. 2011;96:1048–50.

    Article  CAS  PubMed  Google Scholar 

  63. Hindmarsh PC, Charmandari E. Variation in absorption and half-life of hydrocortisone influence plasma cortisol concentrations. Clin Endocrinol (Oxf). 2015;82:557–61.

    Article  CAS  Google Scholar 

  64. Mallappa A, Sinaii N, Kumar P, Whitaker MJ, Daley LA, Digweed D, Eckland DJ, Van Ryzin C, Nieman LK, Arlt W, Ross RJ, Merke DP. A phase 2 study of Chronocort, a modified-release formulation of hydrocortisone, in the treatment of adults with classic congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2015;100:1137–45.

    Article  CAS  PubMed  Google Scholar 

  65. Hindmarsh PC. The child with difficult to control congenital adrenal hyperplasia: is there a place for continuous subcutaneous hydrocortisone therapy. Clin Endocrinol. 2014;81:15–8.

    Article  Google Scholar 

  66. Auchus RJ, Buschur EO, Chang AY, Hammer GD, Ramm C, Madrigal D, Wang G, Gonzalez M, Xu XS, Smit JW, Jiao J, Yu MK. Abiraterone acetate to lower androgens in women with classic 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2014;99:2763–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Forest MG, Morel Y, David M. Prenatal treatment of congenital adrenal hyperplasia. Trends Endocrinol Metab. 1998;9:284–9.

    Article  CAS  PubMed  Google Scholar 

  68. New MI, Carlson A, Obeid J, et al. Extensive personal experience: prenatal diagnosis for congenital adrenal hyperplasia in 532 pregnancies. J Clin Endocrinol Metab. 2001;86:5651–7.

    Article  CAS  PubMed  Google Scholar 

  69. Hirvikoski T, Nordenström A, Lindholm T, Lindblad F, Ritzén EM, Wedell A, Lajic S. Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J Clin Endocrinol Metab. 2007;92:542–8.

    Article  CAS  PubMed  Google Scholar 

  70. Wallensteen L, Zimmermann M, Thomsen Sandberg M, Gezelius A, Nordenström A, Hirvikoski T, Lajic S. Sex-dimorphic effects of prenatal treatment with dexamethasone. J Clin Endocrinol Metab. 2016;101(10):3838–46.

    Article  CAS  PubMed  Google Scholar 

  71. Davis EP, Sandman CA, Buss C, Wing DA, Head K. Fetal glucocorticoid exposure is associated with preadolescent brain development. Biol Psychiatry. 2013;74:647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miller WL, Witchel SF. Prenatal treatment of congenital adrenal hyperplasia: risks outweigh benefits. Am J Obstet Gynecol. 2013;208:354–9.

    Article  PubMed  Google Scholar 

  73. New MI, Tong YK, Yuen T, Jiang P, Pina C, Chan KC, Khattab A, Liao GJ, Yau M, Kim SM, Chiu RW, Sun L, Zaidi M, Lo YM. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014;99:E1022–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Altarescu G. Prevention is the best therapy: the Geneticist's approach. Pediatr Endocrinol Rev. 2016 Jun;13(Suppl 1):649–54.

    PubMed  Google Scholar 

  75. Arlt W, Willis DS, Wild SH, Krone N, Doherty EJ, Hahner S, Han TS, Carroll PV, Conway GS, Rees DA, Stimson RH, Walker BR, Connell JM, Ross RJ, United Kingdom Congenital Adrenal Hyperplasia Adult Study Executive (CaHASE). Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients. J Clin Endocrinol Metab. 2010;95:5110–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Han TS, Walker BR, Arlt W, Ross RJ. Treatment and health outcomes in adults with congenital adrenal hyperplasia. Nat Rev Endocrinol. 2014;10:115–24.

    Article  CAS  PubMed  Google Scholar 

  77. Finkielstain GP, Kim MS, Sinaii N, Nishitani M, Van Ryzin C, Hill SC, Reynolds JC, Hanna RM, Merke DP. Clinical characteristics of a cohort of 244 patients with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2012;97:4429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bachelot A, Golmard JL, Dulon J, Dahmoune N, Leban M, Bouvattier C, Cabrol S, Leger J, Polak M, Touraine P. Determining clinical and biological indicators for health outcomes in adult patients with childhood onset of congenital adrenal hyperplasia. Eur J Endocrinol. 2015;173:175–84.

    Article  CAS  PubMed  Google Scholar 

  79. Falhammar H, Frisén L, Hirschberg AL, Norrby C, Almqvist C, Nordenskjöld A, Nordenström A. Increased cardiovascular and metabolic morbidity in patients with 21-hydroxylase deficiency: a Swedish population-based National Cohort Study. J Clin Endocrinol Metab. 2015;100:3520–8.

    Article  CAS  PubMed  Google Scholar 

  80. De Crecchio L. Sopra un caso di apparenze virili in una donna. Il Morgagni. 1965:151–89.

    Google Scholar 

  81. Turcu AF, Auchus RL. The next 150 years of congenital adrenal hyperplasia. J Steroid Biochem Mol Biol. 2015;153:63–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Feldman Witchel M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Witchel, S.F. (2018). Genetics and Pathophysiology of Congenital Adrenal Hyperplasia. In: Levine, A. (eds) Adrenal Disorders. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-62470-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62470-9_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-62469-3

  • Online ISBN: 978-3-319-62470-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics