Advertisement

Autoimmune Addison’s Disease: Genetic Aetiology and Pathophysiology

  • Agnieszka Pazderska
  • Simon H. Pearce
  • Anna Louise Mitchell
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Autoimmune Addison disease (AAD) is a rare but highly heritable endocrine condition. An autoimmune aetiology is implicated in over 80% of cases of primary adrenal insufficiency in developed countries. In AAD, an aberrant immune response directed against steroidogenic enzymes leads to destruction of the adrenal cortex and resultant mineralo— and glucocorticoid deficiency. The primary autoantigen in AAD is the steroid 21-hydroxylase (21-OH) enzyme and antibodies directed against it can be detected in 85% of patients. The presence of 21-OH antibodies and biochemical abnormalities including raised ACTH, raised renin with normal or low aldosterone, followed by subnormal basal and/or stimulated cortisol precede the development of clinical signs and symptoms of primary adrenal insufficiency. The clinical features are non-specific and include hyperpigmentation, fatigue, weight loss, hypotension and salt craving.

AAD can occur in the context of autoimmune polyglandular syndrome type 1 (APS1) due to autoimmune regulatory (AIRE) gene mutations inherited in an autosomal recessive fashion. The clinical diagnosis of this entity is based on the presence of at least two out of three features: mucocutaneous candidiasis, hypoparathyroidism and AAD. APS1-affected individuals often have other associated autoimmune conditions. Dominant inheritance of a milder APS1 phenotype has been described recently due to heterozygous AIRE gene mutations that inactivate the normal allele (dominant negative mutations).

The pathogenesis of isolated AAD and AAD in the context of APS2 (AAD with autoimmune thyroid disease and/or type 1 diabetes and/or other autoimmune diseases) is due to a complex interplay between genetic and environmental factors. The genetic basis involves multiple susceptibility variants. To date, the majority of genetic susceptibility loci encode proteins involved in antigen presentation and T cell activation. However, a number of common susceptibility variants have also been also described in genes involved in the activation of B lymphocytes and antigen presenting cells. The strongest association between disease susceptibility and allelic variability has been found with HLA class II molecules. Thus far however, the identified susceptibility variants appear to have only a modest effect in terms of disease risk contribution. Recent studies suggest that the risk of AAD development can be also affected by processes influencing gene expression, such as common copy number variation and epigenetic modification. The environmental triggers for AAD remain largely undefined.

Keywords

Autoimmune Addison’s disease Primary adrenal insufficiency Autoimmunity Genetics 

References

  1. 1.
    Kong MF, Jeffcoate W. Eighty-six cases of Addison's disease. Clin Endocrinol. 1994;41(6):757–61.CrossRefGoogle Scholar
  2. 2.
    Laureti S, Vecchi L, Santeusanio F, Falorni A. Is the prevalence of Addison's disease underestimated? J Clin Endocrinol Metab. 1999;84(5):1762.PubMedGoogle Scholar
  3. 3.
    Lovas K, Husebye ES. High prevalence and increasing incidence of Addison's disease in western Norway. Clin Endocrinol. 2002;56(6):787–91.CrossRefGoogle Scholar
  4. 4.
    Olafsson AS, Sigurjonsdottir HA. Increasing prevalence of Addison disease: results from a Nationwide study. Endocr Pract. 2016;22(1):30–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Myhre AG, Undlien DE, Lovas K, et al. Autoimmune adrenocortical failure in Norway autoantibodies and human leukocyte antigen class II associations related to clinical features. J Clin Endocrinol Metab. 2002;87(2):618–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Meyer G, Neumann K, Badenhoop K, Linder R. Increasing prevalence of Addison's disease in German females: health insurance data 2008-2012. Eur J Endocrinol. 2014;170(3):367–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Ten S, New M, Maclaren N. Clinical review 130: Addison's disease 2001. J Clin Endocrinol Metab. 2001;86(7):2909–22.PubMedGoogle Scholar
  8. 8.
    Söderbergh A, Winqvist O, Norheim I, et al. Adrenal autoantibodies and organ-specific autoimmunity in patients with Addison's disease. Clin Endocrinol. 1996;45(4):453–60.CrossRefGoogle Scholar
  9. 9.
    Nerup J. Addison's disease - a review of some clinical, pathological and immunological features. Dan Med Bull. 1974;21(6):201–17.PubMedGoogle Scholar
  10. 10.
    Zelissen PM, Bast EJ, Croughs RJ. Associated autoimmunity in Addison's disease. J Autoimmun. 1995;8(1):121–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Soderbergh A, Winqvist O, Norheim I, et al. Adrenal autoantibodies and organ-specific autoimmunity in patients with Addison's disease. Clin Endocrinol. 1996;45(4):453–60.CrossRefGoogle Scholar
  12. 12.
    Meimaridou E, Kowalczyk J, Guasti L, et al. Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency. Nat Genet. 2012;44(7):740–2.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Meimaridou E, Hughes CR, Kowalczyk J, et al. Familial glucocorticoid deficiency: new genes and mechanisms. Mol Cell Endocrinol. 2013;371(1–2):195–200.PubMedCrossRefGoogle Scholar
  14. 14.
    Wassif CA, Maslen C, Kachilele-Linjewile S, et al. Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome. Am J Hum Genet. 1998;63(1):55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Heggarty H. Addison's disease in identical twins. Br Med J. 1968;1(5591):559.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Simmonds JP, Lister J. Auto-immune Addison's disease in identical twins. Postgrad Med J. 1978;54(634):552–4.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Russell GA, Coulter JB, Isherwood DM, Diver MJ, Smith DS. Autoimmune Addison's disease and thyrotoxic thyroiditis presenting as encephalopathy in twins. Arch Dis Child. 1991;66(3):350–2.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fairchild RS, Schimke RN, Abdou NI. Immunoregulation abnormalities in familial Addison's disease. J Clin Endocrinol Metab. 1980;51(5):1074–7.PubMedCrossRefGoogle Scholar
  19. 19.
    HEWITT PH. Addison's disease occurring in sisters. Br Med J. 1957;2(5060):1530–1.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Neufeld M, Maclaren NK, Blizzard RM. Two types of autoimmune Addison's disease associated with different polyglandular autoimmune (PGA) syndromes. Medicine (Baltimore). 1981;60(5):355–62.CrossRefGoogle Scholar
  21. 21.
    Betterle C, Volpato M, Greggio AN, Presotto F. Type 2 polyglandular autoimmune disease (Schmidt's syndrome). J Pediatr Endocrinol Metab. 1996;9(Suppl 1):113–23.PubMedGoogle Scholar
  22. 22.
    Betterle C, Scarpa R, Garelli S, et al. Addison's disease: a survey on 633 patients in Padova. Eur J Endocrinol. 2013;169(6):773–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265(5181):2037–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Winqvist O, Karlsson FA, Kämpe O. 21-hydroxylase, a major autoantigen in idiopathic Addison's disease. Lancet. 1992;339(8809):1559–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Betterle C, Scalici C, Presotto F, et al. The natural history of adrenal function in autoimmune patients with adrenal autoantibodies. J Endocrinol. 1988;117(3):467–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Krohn K, Uibo R, Aavik E, Peterson P, Savilahti K. Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Lancet. 1992;339(8796):770–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Winqvist O, Gustafsson J, Rorsman F, Karlsson FA, Kämpe O. Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison's disease. J Clin Invest. 1993;92(5):2377–85.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Betterle C, Dal Pra C, Mantero F, Zanchetta R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev. 2002;23(3):327–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Nikoshkov A, Falorni A, Lajic S, et al. A conformation-dependent epitope in Addison's disease and other endocrinological autoimmune diseases maps to a carboxyl-terminal functional domain of human steroid 21-hydroxylase. J Immunol. 1999;162(4):2422–6.PubMedGoogle Scholar
  30. 30.
    Furmaniak J, Kominami S, Asawa T, Wedlock N, Colls J, Smith BR. Autoimmune Addison's disease--evidence for a role of steroid 21-hydroxylase autoantibodies in adrenal insufficiency. J Clin Endocrinol Metab. 1994;79(5):1517–21.PubMedGoogle Scholar
  31. 31.
    Boscaro M, Betterle C, Volpato M, et al. Hormonal responses during various phases of autoimmune adrenal failure: no evidence for 21-hydroxylase enzyme activity inhibition in vivo. J Clin Endocrinol Metab. 1996;81(8):2801–4.PubMedGoogle Scholar
  32. 32.
    Betterle C, Pra CD, Pedini B, et al. Assessment of adrenocortical function and autoantibodies in a baby born to a mother with autoimmune polyglandular syndrome type 2. J Endocrinol Investig. 2004;27(7):618–21.CrossRefGoogle Scholar
  33. 33.
    Dawoodji A, Chen JL, Shepherd D, et al. High frequency of cytolytic 21-hydroxylase-specific CD8+ T cells in autoimmune Addison's disease patients. J Immunol. 2014;193(5):2118–26.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rottembourg D, Deal C, Lambert M, et al. 21-hydroxylase epitopes are targeted by CD8 T cells in autoimmune Addison's disease. J Autoimmun. 2010;35(4):309–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Bratland E, Skinningsrud B, Undlien DE, Mozes E, Husebye ES. T cell responses to steroid cytochrome P450 21-hydroxylase in patients with autoimmune primary adrenal insufficiency. J Clin Endocrinol Metab. 2009;94(12):5117–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Betterle C, Coco G, Zanchetta R. Adrenal cortex autoantibodies in subjects with normal adrenal function. Best Pract Res Clin Endocrinol Metab. 2005;19(1):85–99.PubMedCrossRefGoogle Scholar
  37. 37.
    Coco G, Dal Pra C, Presotto F, et al. Estimated risk for developing autoimmune Addison's disease in patients with adrenal cortex autoantibodies. J Clin Endocrinol Metab. 2006;91(5):1637–45.PubMedCrossRefGoogle Scholar
  38. 38.
    Eason RJ, Croxson MS, Perry MC, Somerfield SD. Addison's disease, adrenal autoantibodies and computerised adrenal tomography. N Z Med J. 1982;95(714):569–73.PubMedGoogle Scholar
  39. 39.
    Wesche B, Jaeckel E, Trautwein C, et al. Induction of autoantibodies to the adrenal cortex and pancreatic islet cells by interferon alpha therapy for chronic hepatitis C. Gut. 2001;48(3):378–83.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Betterle C, Volpato M, Rees Smith B, et al. II. Adrenal cortex and steroid 21-hydroxylase autoantibodies in children with organ-specific autoimmune diseases: markers of high progression to clinical Addison's disease. J Clin Endocrinol Metab. 1997;82(3):939–42.PubMedGoogle Scholar
  41. 41.
    Riley WJ, Maclaren NK, Neufeld M. Adrenal autoantibodies and Addison disease in insulin-dependent diabetes mellitus. J Pediatr. 1980;97(2):191–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Leisti S, Ahonen P, Perheentupa J. The diagnosis and staging of hypocortisolism in progressing autoimmune adrenalitis. Pediatr Res. 1983;17(11):861–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Ahonen P, Miettinen A, Perheentupa J. Adrenal and steroidal cell antibodies in patients with autoimmune polyglandular disease type I and risk of adrenocortical and ovarian failure. J Clin Endocrinol Metab. 1987;64(3):494–500.PubMedCrossRefGoogle Scholar
  44. 44.
    Betterle C, Volpato M, Rees Smith B, et al. I. Adrenal cortex and steroid 21-hydroxylase autoantibodies in adult patients with organ-specific autoimmune diseases: markers of low progression to clinical Addison's disease. J Clin Endocrinol Metab. 1997;82(3):932–8.PubMedGoogle Scholar
  45. 45.
    Torrejón S, Webb SM, Rodríguez-Espinosa J. Martínez de Osaba MJ, Corcoy R. Long-lasting subclinical Addison's disease. Exp Clin Endocrinol Diabetes. 2007;115(8):530–2.PubMedCrossRefGoogle Scholar
  46. 46.
    Baker PR, Baschal EE, Fain PR, et al. Dominant suppression of Addison's disease associated with HLA-B15. J Clin Endocrinol Metab. 2011;96(7):2154–62.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Baker PR, Nanduri P, Gottlieb PA, et al. Predicting the onset of Addison's disease: ACTH, renin, cortisol and 21-hydroxylase autoantibodies. Clin Endocrinol. 2012;76(5):617–24.CrossRefGoogle Scholar
  48. 48.
    Rosenthal FD, Davies MK, Burden AC. Malignant disease presenting as Addison's disease. Br Med J. 1978;1(6127):1591–2.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Smans LC, Zelissen PM. Partial recovery of adrenal function in a patient with autoimmune Addison's disease. J Endocrinol Investig. 2008;31(7):672–4.CrossRefGoogle Scholar
  50. 50.
    Chakera AJ, Vaidya B. Spontaneously resolving Addison's disease. QJM. 2012;105(11):1113–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Baxter M, Gorick S, Swords FM. Recovery of adrenal function in a patient with confirmed Addison's disease. Endocrinol Diabetes Metab Case Rep. 2013;2013:130070.PubMedPubMedCentralGoogle Scholar
  52. 52.
    De Bellis AA, Falorni A, Laureti S, et al. Time course of 21-hydroxylase antibodies and long-term remission of subclinical autoimmune adrenalitis after corticosteroid therapy: case report. J Clin Endocrinol Metab. 2001;86(2):675–8.CrossRefGoogle Scholar
  53. 53.
    Perheentupa J. APS-I/APECED: the clinical disease and therapy. Endocrinol Metab Clin N Am. 2002;31(2):295–320. viCrossRefGoogle Scholar
  54. 54.
    Meloni A, Willcox N, Meager A, et al. Autoimmune polyendocrine syndrome type 1: an extensive longitudinal study in Sardinian patients. J Clin Endocrinol Metab. 2012;97(4):1114–24.PubMedCrossRefGoogle Scholar
  55. 55.
    Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med. 1990;322(26):1829–36.PubMedCrossRefGoogle Scholar
  56. 56.
    Betterle C, Greggio NA, Volpato M. Clinical review 93: autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab. 1998;83(4):1049–55.PubMedCrossRefGoogle Scholar
  57. 57.
    Akirav EM, Ruddle NH, Herold KC. The role of AIRE in human autoimmune disease. Nat Rev Endocrinol. 2011;7(1):25–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Consortium F-GA. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet. 1997;17(4):399–403.CrossRefGoogle Scholar
  59. 59.
    Zlotogora J, Shapiro MS. Polyglandular autoimmune syndrome type I among Iranian Jews. J Med Genet. 1992;29(11):824–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rosatelli MC, Meloni A, Devoto M, et al. A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. Hum Genet. 1998;103(4):428–34.PubMedCrossRefGoogle Scholar
  61. 61.
    Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 2006;91(8):2843–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Wolff AS, Erichsen MM, Meager A, et al. Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J Clin Endocrinol Metab. 2007;92(2):595–603.PubMedCrossRefGoogle Scholar
  63. 63.
    Oftedal BE, Hellesen A, Erichsen MM, et al. Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases. Immunity. 2015;42(6):1185–96.PubMedCrossRefGoogle Scholar
  64. 64.
    Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet. 1987;40(1):1–14.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Vaidya B, Kendall-Taylor P, Pearce SH. The genetics of autoimmune thyroid disease. J Clin Endocrinol Metab. 2002;87(12):5385–97.PubMedCrossRefGoogle Scholar
  66. 66.
    Skinningsrud B, Lie BA, Lavant E, et al. Multiple loci in the HLA complex are associated with Addison's disease. J Clin Endocrinol Metab. 2011;96(10):E1703–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Myhre AG, Undlien DE, Løvås K, et al. Autoimmune adrenocortical failure in Norway autoantibodies and human leukocyte antigen class II associations related to clinical features. J Clin Endocrinol Metab. 2002;87(2):618–23.PubMedCrossRefGoogle Scholar
  68. 68.
    Gombos Z, Hermann R, Kiviniemi M, et al. Analysis of extended human leukocyte antigen haplotype association with Addison's disease in three populations. Eur J Endocrinol. 2007;157(6):757–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Gambelunghe G, Falorni A, Ghaderi M, et al. Microsatellite polymorphism of the MHC class I chain-related (MIC-A and MIC-B) genes marks the risk for autoimmune Addison's disease. J Clin Endocrinol Metab. 1999;84(10):3701–7.PubMedGoogle Scholar
  70. 70.
    Park YS, Sanjeevi CB, Robles D, et al. Additional association of intra-MHC genes, MICA and D6S273, with Addison's disease. Tissue Antigens. 2002;60(2):155–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Partanen J, Peterson P, Westman P, Aranko S, Krohn K. Major Histocompatibility complex class II and III in Addison's disease. MHC alleles do not predict autoantibody specificity and 21-hydroxylase gene polymorphism has no independent role in disease susceptibility. Hum Immunol. 1994;41(2):135–40.PubMedCrossRefGoogle Scholar
  72. 72.
    Peterson P, Partanen J, Aavik E, Salmi H, Pelkonen R, Krohn KJ. Steroid 21-hydroxylase gene polymorphism in Addison's disease patients. Tissue Antigens. 1995;46(1):63–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Skinningsrud B, Husebye ES, Pearce SH, et al. Polymorphisms in CLEC16A and CIITA at 16p13 are associated with primary adrenal insufficiency. J Clin Endocrinol Metab. 2008;93(9):3310–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Lopez ER, Zwermann O, Segni M, et al. A promoter polymorphism of the CYP27B1 gene is associated with Addison's disease, Hashimoto's thyroiditis, Graves' disease and type 1 diabetes mellitus in Germans. Eur J Endocrinol. 2004;151(2):193–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Jennings CE, Owen CJ, Wilson V, Pearce SH. A haplotype of the CYP27B1 promoter is associated with autoimmune Addison's disease but not with Graves' disease in a UK population. J Mol Endocrinol. 2005;34(3):859–63.PubMedCrossRefGoogle Scholar
  76. 76.
    Mitchell AL, Macarthur KD, Gan EH, et al. Association of autoimmune Addison's disease with alleles of STAT4 and GATA3 in European cohorts. PLoS One. 2014;9(3):e88991.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Pani MA, Seissler J, Usadel KH, Badenhoop K. Vitamin D receptor genotype is associated with Addison's disease. Eur J Endocrinol. 2002;147(5):635–40.PubMedCrossRefGoogle Scholar
  78. 78.
    Owen CJ, Kelly H, Eden JA, Merriman ME, Pearce SH, Merriman TR. Analysis of the fc receptor-like-3 (FCRL3) locus in Caucasians with autoimmune disorders suggests a complex pattern of disease association. J Clin Endocrinol Metab. 2007;92(3):1106–11.PubMedCrossRefGoogle Scholar
  79. 79.
    Velaga MR, Wilson V, Jennings CE, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves' disease. J Clin Endocrinol Metab. 2004;89(11):5862–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Kahles H, Ramos-Lopez E, Lange B, Zwermann O, Reincke M, Badenhoop K. Sex-specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto's thyroiditis or Addison's disease in the German population. Eur J Endocrinol. 2005;153(6):895–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Skinningsrud B, Husebye ES, Gervin K, et al. Mutation screening of PTPN22: association of the 1858T-allele with Addison's disease. Eur J Hum Genet. 2008;16(8):977–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Roycroft M, Fichna M, McDonald D, et al. The tryptophan 620 allele of the lymphoid tyrosine phosphatase (PTPN22) gene predisposes to autoimmune Addison's disease. Clin Endocrinol. 2009;70(3):358–62.CrossRefGoogle Scholar
  83. 83.
    Vaidya B, Imrie H, Geatch DR, et al. Association analysis of the cytotoxic T lymphocyte antigen-4 (CTLA-4) and autoimmune regulator-1 (AIRE-1) genes in sporadic autoimmune Addison's disease. J Clin Endocrinol Metab. 2000;85(2):688–91.PubMedGoogle Scholar
  84. 84.
    Wolff AS, Mitchell AL, Cordell HJ, et al. CTLA-4 as a genetic determinant in autoimmune Addison's disease. Genes Immun. 2015;16(6):430–6.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Blomhoff A, Lie BA, Myhre AG, et al. Polymorphisms in the cytotoxic T lymphocyte antigen-4 gene region confer susceptibility to Addison's disease. J Clin Endocrinol Metab. 2004;89(7):3474–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Magitta NF, Bøe Wolff AS, Johansson S, et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison's disease and type 1 diabetes. Genes Immun. 2009;10(2):120–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Zurawek M, Fichna M, Januszkiewicz-Lewandowska D, Gryczyńska M, Fichna P, Nowak J. A coding variant in NLRP1 is associated with autoimmune Addison's disease. Hum Immunol. 2010;71(5):530–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Mitchell AL, Cordell HJ, Soemedi R, et al. Programmed death ligand 1 (PD-L1) gene variants contribute to autoimmune Addison's disease and Graves' disease susceptibility. J Clin Endocrinol Metab. 2009;94(12):5139–45.PubMedCrossRefGoogle Scholar
  89. 89.
    Napier C, Mitchell AL, Gan E, Wilson I, Pearce SH. Role of the X-linked gene GPR174 in autoimmune Addison's disease. J Clin Endocrinol Metab. 2015;100(1):E187–90.PubMedCrossRefGoogle Scholar
  90. 90.
    Fichna M, Żurawek M, Bratland E, et al. Interleukin-2 and subunit alpha of its soluble receptor in autoimmune Addison's disease--an association study and expression analysis. Autoimmunity. 2015;48(2):100–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Pazderska A, Oftedal BE, Napier CM, et al. A variant in the BACH2 gene is associated with susceptibility to autoimmune Addison's disease in humans. J Clin Endocrinol Metab. 2016;101(11):3865–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Mitchell AL, Bøe Wolff A, MacArthur K, et al. Linkage analysis in autoimmune Addison's disease: NFATC1 as a potential novel susceptibility locus. PLoS One. 2015;10(6):e0123550.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Jackson R, McNicol AM, Farquharson M, Foulis AK. Class II MHC expression in normal adrenal cortex and cortical cells in autoimmune Addison's disease. J Pathol. 1988;155(2):113–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Mungall AJ, Palmer SA, Sims SK, et al. The DNA sequence and analysis of human chromosome 6. Nature. 2003;425(6960):805–11.PubMedCrossRefGoogle Scholar
  95. 95.
    Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens. 2004;64(6):631–49.PubMedCrossRefGoogle Scholar
  96. 96.
    Maclaren NK, Riley WJ. Inherited susceptibility to autoimmune Addison's disease is linked to human leukocyte antigens-DR3 and/or DR4, except when associated with type I autoimmune polyglandular syndrome. J Clin Endocrinol Metab. 1986;62(3):455–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Boehm BO, Manfras B, Seidl S, et al. The HLA-DQ beta non-asp-57 allele: a predictor of future insulin-dependent diabetes mellitus in patients with autoimmune Addison's disease. Tissue Antigens. 1991;37(3):130–2.PubMedCrossRefGoogle Scholar
  98. 98.
    Huang W, Connor E, Rosa TD, et al. Although DR3-DQB1*0201 may be associated with multiple component diseases of the autoimmune polyglandular syndromes, the human leukocyte antigen DR4-DQB1*0302 haplotype is implicated only in beta-cell autoimmunity. J Clin Endocrinol Metab. 1996;81(7):2559–63.PubMedGoogle Scholar
  99. 99.
    Gambelunghe G, Kockum I, Bini V, et al. Retrovirus-like long-terminal repeat DQ-LTR13 and genetic susceptibility to type 1 diabetes and autoimmune Addison's disease. Diabetes. 2005;54(3):900–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Brønstad I, Skinningsrud B, Bratland E, et al. CYP21A2 polymorphisms in patients with autoimmune Addison's disease, and linkage disequilibrium to HLA risk alleles. Eur J Endocrinol. 2014;171(6):743–50.PubMedCrossRefGoogle Scholar
  101. 101.
    Triolo TM, Baschal EE, Armstrong TK, et al. Homozygosity of the polymorphism MICA5.1 identifies extreme risk of progression to overt adrenal insufficiency among 21-hydroxylase antibody-positive patients with type 1 diabetes. J Clin Endocrinol Metab. 2009;94(11):4517–23.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Eike MC, Skinningsrud B, Ronninger M, et al. CIITA gene variants are associated with rheumatoid arthritis in Scandinavian populations. Genes Immun. 2012;13(5):431–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Bronson PG, Goldstein BA, Ramsay PP, et al. The rs4774 CIITA missense variant is associated with risk of systemic lupus erythematosus. Genes Immun. 2011;12(8):667–71.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Dubois PC, Trynka G, Franke L, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42(4):295–302.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ghaderi M, Gambelunghe G, Tortoioli C, et al. MHC2TA single nucleotide polymorphism and genetic risk for autoimmune adrenal insufficiency. J Clin Endocrinol Metab. 2006;91(10):4107–11.PubMedCrossRefGoogle Scholar
  106. 106.
    Appleman LJ, Berezovskaya A, Grass I, Boussiotis VA. CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J Immunol. 2000;164(1):144–51.PubMedCrossRefGoogle Scholar
  107. 107.
    Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ting WH, Chien MN, Lo FS, et al. Association of Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) Gene polymorphisms with autoimmune thyroid disease in children and adults: case-control study. PLoS One. 2016;11(4):e0154394.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kotsa K, Watson PF, Weetman AP. A CTLA-4 gene polymorphism is associated with both Graves disease and autoimmune hypothyroidism. Clin Endocrinol. 1997;46(5):551–4.CrossRefGoogle Scholar
  111. 111.
    Marron MP, Raffel LJ, Garchon HJ, et al. Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. Hum Mol Genet. 1997;6(8):1275–82.PubMedCrossRefGoogle Scholar
  112. 112.
    Nisticò L, Buzzetti R, Pritchard LE, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian diabetes registry. Hum Mol Genet. 1996;5(7):1075–80.PubMedCrossRefGoogle Scholar
  113. 113.
    Vaidya B, Pearce SH, Charlton S, et al. An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. Rheumatology (Oxford). 2002;41(2):180–3.CrossRefGoogle Scholar
  114. 114.
    Djilali-Saiah I, Schmitz J, Harfouch-Hammoud E, Mougenot JF, Bach JF, Caillat-Zucman S. CTLA-4 gene polymorphism is associated with predisposition to coeliac disease. Gut. 1998;43(2):187–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Brozzetti A, Marzotti S, Tortoioli C, et al. Cytotoxic T lymphocyte antigen-4 Ala17 polymorphism is a genetic marker of autoimmune adrenal insufficiency: Italian association study and meta-analysis of European studies. Eur J Endocrinol. 2010;162(2):361–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Kemp EH, Ajjan RA, Husebye ES, et al. A cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism is associated with autoimmune Addison's disease in English patients. Clin Endocrinol. 1998;49(5):609–13.CrossRefGoogle Scholar
  117. 117.
    Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506–11.PubMedCrossRefGoogle Scholar
  118. 118.
    Daroszewski J, Pawlak E, Karabon L, et al. Soluble CTLA-4 receptor an immunological marker of Graves' disease and severity of ophthalmopathy is associated with CTLA-4 Jo31 and CT60 gene polymorphisms. Eur J Endocrinol. 2009;161(5):787–93.PubMedCrossRefGoogle Scholar
  119. 119.
    Esposito L, Hunter KM, Clark J, et al. Investigation of soluble and transmembrane CTLA-4 isoforms in serum and microvesicles. J Immunol. 2014;193(2):889–900.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36(4):337–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Begovich AB, Carlton VE, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet. 2004;75(2):330–7.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet. 2004;75(3):504–7.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Fiorillo E, Orrú V, Stanford SM, et al. Autoimmune-associated PTPN22 R620W variation reduces phosphorylation of lymphoid phosphatase on an inhibitory tyrosine residue. J Biol Chem. 2010;285(34):26506–18.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Vang T, Liu WH, Delacroix L, et al. LYP inhibits T-cell activation when dissociated from CSK. Nat Chem Biol. 2012;8(5):437–46.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Zikherman J, Hermiston M, Steiner D, Hasegawa K, Chan A, Weiss A. PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J Immunol. 2009;182(7):4093–106.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zhang J, Zahir N, Jiang Q, et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet. 2011;43(9):902–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Zhernakova A, Alizadeh BZ, Bevova M, et al. Novel association in chromosome 4q27 region with rheumatoid arthritis and confirmation of type 1 diabetes point to a general risk locus for autoimmune diseases. Am J Hum Genet. 2007;81(6):1284–8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Espino-Paisán L, De La Calle H, Fernández-Arquero M, et al. Study of polymorphisms in 4q27, 10p15, and 22q13 regions in autoantibodies stratified type 1 diabetes patients. Autoimmunity. 2011;44(8):624–30.PubMedCrossRefGoogle Scholar
  130. 130.
    Maiti AK, Kim-Howard X, Viswanathan P, et al. Confirmation of an association between rs6822844 at the Il2-Il21 region and multiple autoimmune diseases: evidence of a general susceptibility locus. Arthritis Rheum. 2010;62(2):323–9.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10):977–86.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lee HS, Remmers EF, Le JM, Kastner DL, Bae SC, Gregersen PK. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol Med. 2007;13(9–10):455–60.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Barton A, Thomson W, Ke X, et al. Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility. Hum Mol Genet. 2008;17(15):2274–9.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Bi C, Li B, Cheng Z, Hu Y, Fang Z, Zhai A. Association study of STAT4 polymorphisms and type 1 diabetes in northeastern Chinese Han population. Tissue Antigens. 2013;81(3):137–40.PubMedCrossRefGoogle Scholar
  135. 135.
    Pai SY, Truitt ML, Ho IC. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci U S A. 2004;101(7):1993–8.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Eyre S, Bowes J, Diogo D, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44(12):1336–40.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Cooper JD, Smyth DJ, Smiles AM, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40(12):1399–401.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Trynka G, Hunt KA, Bockett NA, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2011;43(12):1193–201.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Medici M, Porcu E, Pistis G, et al. Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet. 2014;10(2):e1004123.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet. 2010;42(12):1118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Jin Y, Birlea SA, Fain PR, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44(6):676–80.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 1997;15:707–47.PubMedCrossRefGoogle Scholar
  143. 143.
    Oestreich KJ, Yoon H, Ahmed R, Boss JM. NFATc1 regulates PD-1 expression upon T cell activation. J Immunol. 2008;181(7):4832–9.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Sugita K, Yamamura C, Tabata K, Fujita N. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP. Biochem Biophys Res Commun. 2013;430(1):190–5.PubMedCrossRefGoogle Scholar
  145. 145.
    Mosenden R, Taskén K. Cyclic AMP-mediated immune regulation--overview of mechanisms of action in T cells. Cell Signal. 2011;23(6):1009–16.PubMedCrossRefGoogle Scholar
  146. 146.
    Chu X, Shen M, Xie F, et al. An X chromosome-wide association analysis identifies variants in GPR174 as a risk factor for Graves' disease. J Med Genet. 2013;50(7):479–85.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Szymański K, Miśkiewicz P, Pirko K, et al. rs3827440, a nonsynonymous single nucleotide polymorphism within GPR174 gene in X chromosome, is associated with Graves' disease in Polish Caucasian population. Tissue Antigens. 2014;83(1):41–4.PubMedCrossRefGoogle Scholar
  148. 148.
    Hahn HJ, Kuttler B, Mathieu C, Bouillon R. 1,25-Dihydroxyvitamin D3 reduces MHC antigen expression on pancreatic beta-cells in vitro. Transplant Proc. 1997;29(4):2156–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Thomasset M. Vitamin D and the immune system. Pathol Biol (Paris). 1994;42(2):163–72.Google Scholar
  150. 150.
    Piemonti L, Monti P, Sironi M, et al. Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol. 2000;164(9):4443–51.PubMedCrossRefGoogle Scholar
  151. 151.
    Pani MA, Knapp M, Donner H, et al. Vitamin D receptor allele combinations influence genetic susceptibility to type 1 diabetes in Germans. Diabetes. 2000;49(3):504–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Guo SW, Magnuson VL, Schiller JJ, Wang X, Wu Y, Ghosh S. Meta-analysis of vitamin D receptor polymorphisms and type 1 diabetes: a HuGE review of genetic association studies. Am J Epidemiol. 2006;164(8):711–24.PubMedCrossRefGoogle Scholar
  153. 153.
    Ramos-Lopez E, Kurylowicz A, Bednarczuk T, Paunkovic J, Seidl C, Badenhoop K. Vitamin D receptor polymorphisms are associated with Graves' disease in German and Polish but not in Serbian patients. Thyroid. 2005;15(10):1125–30.PubMedCrossRefGoogle Scholar
  154. 154.
    Collins JE, Heward JM, Nithiyananthan R, et al. Lack of association of the vitamin D receptor gene with Graves' disease in UK Caucasians. Clin Endocrinol. 2004;60(5):618–24.CrossRefGoogle Scholar
  155. 155.
    Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet. 2005;37(5):478–85.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Martinon F, Gaide O, Pétrilli V, Mayor A, Tschopp J. NALP inflammasomes: a central role in innate immunity. Semin Immunopathol. 2007;29(3):213–29.PubMedCrossRefGoogle Scholar
  157. 157.
    Jin Y, Mailloux CM, Gowan K, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356(12):1216–25.PubMedCrossRefGoogle Scholar
  158. 158.
    Pontillo A, Vendramin A, Catamo E, Fabris A, Crovella S. The missense variation Q705K in CIAS1/NALP3/NLRP3 gene and an NLRP1 haplotype are associated with celiac disease. Am J Gastroenterol. 2011;106(3):539–44.PubMedCrossRefGoogle Scholar
  159. 159.
    Sui J, Li H, Fang Y, et al. NLRP1 gene polymorphism influences gene transcription and is a risk factor for rheumatoid arthritis in han chinese. Arthritis Rheum. 2012;64(3):647–54.PubMedCrossRefGoogle Scholar
  160. 160.
    Hakonarson H, Grant SF, Bradfield JP, et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 2007;448(7153):591–4.PubMedCrossRefGoogle Scholar
  161. 161.
    Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39(7):857–64.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Fanciulli M, Norsworthy PJ, Petretto E, et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet. 2007;39(6):721–3.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Brønstad I, Wolff AS, Løvås K, Knappskog PM, Husebye ES. Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease. BMC Med Genet. 2011;12:111.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Bjanesoy TE, Andreassen BK, Bratland E, et al. Altered DNA methylation profile in Norwegian patients with autoimmune Addison's disease. Mol Immunol. 2014;59(2):208–16.PubMedCrossRefGoogle Scholar
  165. 165.
    Short AD, Catchpole B, Boag AM, et al. Putative candidate genes for canine hypoadrenocorticism (Addison's disease) in multiple dog breeds. Vet Rec. 2014;175(17):430.PubMedCrossRefGoogle Scholar
  166. 166.
    Pazderska A, Fichna M, Mitchell AL, et al. Impact of month-of-birth on the risk of development of autoimmune Addison's disease. J Clin Endocrinol Metab. 2016;101(11):4214–8.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Stojanovich L. Stress and autoimmunity. Autoimmun Rev. 2010;9(5):A271–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Agnieszka Pazderska
    • 1
  • Simon H. Pearce
    • 1
  • Anna Louise Mitchell
    • 1
  1. 1.Institute of Genetic Medicine, Newcastle UniversityNewcastle upon TyneUK

Personalised recommendations