Skip to main content

Regulation of Adrenal Steroidogenesis

  • Chapter
  • First Online:
Adrenal Disorders

Abstract

The human adrenal cortex is divided into concentric zones: the zona glomerulosa produces aldosterone, the zona fasciculata secretes cortisol, and the zona reticularis synthesizes 19-carbon (C19) androgen precursors. Angiotensin II (Ang II) and extracellular K+ are the principal stimuli of aldosterone secretion, whereas adrenocorticotropic hormone (ACTH) is the main stimulus of cortisol and C19 steroid production. Most of the cholesterol used for the biosynthesis of adrenal steroids is derived from receptor-mediated endocytosis of plasma low-density lipoproteins (LDL). In late endosomes, LDL-derived cholesteryl esters (CEs) are hydrolyzed by lysosomal acid lipase. The resultant-free cholesterol can be re-esterified by sterol O-acetyltransferase and stored in lipid droplets. Cholesterol can be liberated from stored CEs by hormone-sensitive lipase, an enzyme activated in response to Ang II or ACTH or stimulation. To initiate steroidogenesis, cholesterol undergoes facilitated transport from a replenishable pool in the outer mitochondrial membrane to the inner mitochondrial membrane, where CYP11A1 catalyzes the conversion of cholesterol to pregnenolone. The remaining steps of steroidogenesis take place in the endoplasmic reticulum and mitochondria. This chapter highlights the regulation of adrenal steroidogenesis. Key intracellular signaling molecules, including second messengers and downstream transcription factors, are reviewed. Pathological conditions associated with aberrant production of adrenal steroids are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32:81–151.

    Article  CAS  PubMed  Google Scholar 

  2. Turcu AF, Auchus RJ. Adrenal steroidogenesis and congenital adrenal hyperplasia. Endocrinol Metab Clin N Am. 2015;44:275–96.

    Article  Google Scholar 

  3. Miller WL. StAR search--what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. Mol Endocrinol. 2007b;21:589–601.

    Article  CAS  PubMed  Google Scholar 

  4. Bornstein SR, Wilson DB. Anatomy of the adrenal cortex. In: Martini L, Huhtaniemi I, editors. Reference module in biomedical sciences. Oxford: Elsevier; 2015.

    Google Scholar 

  5. Vinson GP. Functional zonation of the adult mammalian adrenal cortex. Front Neurosci. 2016;10:238.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Monticone S, Auchus RJ, Rainey WE. Adrenal disorders in pregnancy. Nat Rev Endocrinol. 2012;8:668–78.

    Article  CAS  PubMed  Google Scholar 

  7. Goto M, Piper HK, Marcos J, Wood PJ, Wright S, Postle AD, Cameron IT, Mason JI, Wilson DI, Hanley NA. In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development. J Clin Invest. 2006;116:953–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mesiano S, Jaffe RB. Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev. 1997;18:378–403.

    CAS  PubMed  Google Scholar 

  9. Quinn TA, Ratnayake U, Dickinson H, Castillo-Melendez M, Walker DW. The feto-placental unit, and potential roles of dehydroepiandrosterone (DHEA) in prenatal and postnatal brain development: a re-examination using the spiny mouse. J Steroid Biochem Mol Biol. 2016;160:204–13.

    Article  CAS  PubMed  Google Scholar 

  10. Peter M, Dorr HG, Sippell WG. Changes in the concentrations of dehydroepiandrosterone sulfate and estriol in maternal plasma during pregnancy: a longitudinal study in healthy women throughout gestation and at term. Horm Res. 1994;42:278–81.

    Article  CAS  PubMed  Google Scholar 

  11. Rainey WE, Rehman KS, Carr BR. The human fetal adrenal: making adrenal androgens for placental estrogens. Semin Reprod Med. 2004;22:327–36.

    Article  CAS  PubMed  Google Scholar 

  12. Sirianni R, Mayhew BA, Carr BR, Parker CR Jr, Rainey WE. Corticotropin-releasing hormone (CRH) and urocortin act through type 1 CRH receptors to stimulate dehydroepiandrosterone sulfate production in human fetal adrenal cells. J Clin Endocrinol Metab. 2005;90:5393–400.

    Article  CAS  PubMed  Google Scholar 

  13. Turcu A, Smith JM, Auchus R, Rainey WE. Adrenal androgens and androgen precursors-definition, synthesis, regulation and physiologic actions. Compr Physiol. 2014;4:1369–81.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xing Y, Lerario AM, Rainey W, Hammer GD. Development of adrenal cortex zonation. Endocrinol Metab Clin N Am. 2015;44:243–74.

    Article  Google Scholar 

  15. Ansurudeen I, Kopf PG, Gauthier KM, Bornstein SR, Cowley AW Jr, Campbell WB. Aldosterone secretagogues increase adrenal blood flow in male rats. Endocrinology. 2014;155:127–32.

    Article  PubMed  CAS  Google Scholar 

  16. Bassett JR, West SH. Vascularization of the adrenal cortex: its possible involvement in the regulation of steroid hormone release. Microsc Res Tech. 1997;36:546–57.

    Article  CAS  PubMed  Google Scholar 

  17. Bollag WB. Regulation of aldosterone synthesis and secretion. Compr Physiol. 2014;4:1017–55.

    Article  PubMed  Google Scholar 

  18. Cole TJ, Terella L, Morgan J, Alexiadis M, Yao YZ, Enriori P, Young MJ, Fuller PJ. Aldosterone-mediated renal sodium transport requires intact mineralocorticoid receptor DNA-binding in the mouse. Endocrinology. 2015;156:2958–68.

    Article  CAS  PubMed  Google Scholar 

  19. Brown NJ. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013;9:459–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gomez-Sanchez CE. Non renal effects of aldosterone. Steroids. 2014a;91:1–2.

    Article  CAS  PubMed  Google Scholar 

  21. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflam. 2014;2014:689360.

    PubMed  PubMed Central  Google Scholar 

  22. Brown NJ. This is not Dr. Conn's aldosterone anymore. Trans Am Clin Climatol Assoc. 2011;122:229–43.

    PubMed  PubMed Central  Google Scholar 

  23. Yates R, Katugampola H, Cavlan D, Cogger K, Meimaridou E, Hughes C, Metherell L, Guasti L, King P. Adrenocortical development, maintenance, and disease. Curr Top Dev Biol. 2013;106:239–312.

    Article  CAS  PubMed  Google Scholar 

  24. Gallo-Payet N. 60 YEARS OF POMC: adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol. 2016;56:T135–56.

    Article  CAS  PubMed  Google Scholar 

  25. Arlt W, Stewart PM. Adrenal corticosteroid biosynthesis, metabolism, and action. Endocrinol Metab Clin N Am. 2005;34:293–313.

    Article  CAS  Google Scholar 

  26. Franchimont D. Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann N Y Acad Sci. 2004;1024:124–37.

    Article  CAS  PubMed  Google Scholar 

  27. Adams JB. Control of secretion and the function of C19-delta 5-steroids of the human adrenal gland. Mol Cell Endocrinol. 1985;41:1–17.

    Article  CAS  PubMed  Google Scholar 

  28. Davison SL, Bell R. Androgen physiology. Semin Reprod Med. 2006;24:71–7.

    Article  CAS  PubMed  Google Scholar 

  29. Rainey WE, Nakamura Y. Regulation of the adrenal androgen biosynthesis. J Steroid Biochem Mol Biol. 2007;108(3–5):281–6.

    PubMed  PubMed Central  Google Scholar 

  30. Beuschlein F, Galac S, Wilson DB. Animal models of adrenocortical tumorigenesis. Mol Cell Endocrinol. 2012;351:78–86.

    Article  CAS  PubMed  Google Scholar 

  31. Morohashi K, Zubair M. The fetal and adult adrenal cortex. Mol Cell Endocrinol. 2011;336:193–7.

    Article  CAS  PubMed  Google Scholar 

  32. Hershkovitz L, Beuschlein F, Klammer S, Krup M, Weinstein Y. Adrenal 20alpha-hydroxysteroid dehydrogenase in the mouse catabolizes progesterone and 11-deoxycorticosterone and is restricted to the X-zone. Endocrinology. 2007;148:976–88.

    Article  CAS  PubMed  Google Scholar 

  33. Guasti L, Cavlan D, Cogger K, Banu Z, Shakur A, Latif S, King PJ. Dlk1 up-regulates Gli1 expression in male rat adrenal capsule cells through the activation of beta1 integrin and ERK1/2. Endocrinology. 2013b;154:4675–84.

    Article  CAS  PubMed  Google Scholar 

  34. Galac S, Wilson DB. Animal models of adrenocortical tumorigenesis. Endocrinol Metab Clin N Am. 2015;44:297–310.

    Article  Google Scholar 

  35. Quinn TA, Ratnayake U, Dickinson H, Nguyen TH, McIntosh M, Castillo-Melendez M, Conley AJ, Walker DW. Ontogeny of the adrenal gland in the spiny mouse, with particular reference to production of the steroids cortisol and dehydroepiandrosterone. Endocrinology. 2013;154:1190–201.

    Article  CAS  PubMed  Google Scholar 

  36. Pignatti E, Leng S, Carlone DL, Breault DT. Regulation of zonation and homeostasis in the adrenal cortex. Mol Cell Endocrinol. 2016;441:146–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pihlajoki M, Dorner J, Cochran RS, Heikinheimo M, Wilson DB. Adrenocortical zonation, renewal, and remodeling. Front Endocrinol (Lausanne). 2015;6:27.

    Google Scholar 

  38. Walczak EM, Hammer GD. Regulation of the adrenocortical stem cell niche: implications for disease. Nat Rev Endocrinol. 2015;11:14–28.

    Article  CAS  PubMed  Google Scholar 

  39. Gallo-Payet N, Guillon G. Regulation of adrenocortical function by vasopressin. Horm Metab Res. 1998;30:360–7.

    Article  CAS  PubMed  Google Scholar 

  40. Pattison JC, Abbott DH, Saltzman W, Conley AJ, Bird IM. Plasticity of the zona reticularis in the adult marmoset adrenal cortex: voyages of discovery in the new world. J Endocrinol. 2009;203:313–26.

    Article  CAS  PubMed  Google Scholar 

  41. Topor LS, Asai M, Dunn J, Majzoub JA. Cortisol stimulates secretion of dehydroepiandrosterone in human adrenocortical cells through inhibition of 3betaHSD2. J Clin Endocrinol Metab. 2011;96:E31–9.

    Article  CAS  PubMed  Google Scholar 

  42. Thomas JL, Rajapaksha M, Mack VL, DeMars GA, Majzoub JA, Bose HS. Regulation of human 3beta-hydroxysteroid dehydrogenase type 2 by adrenal corticosteroids and product-feedback by androstenedione in human adrenarche. J Pharmacol Exp Ther. 2015;352:67–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bernichtein S, Alevizaki M, Huhtaniemi I. Is the adrenal cortex a target for gonadotropins? Trends Endocrinol Metab. 2008;19:231–8.

    Article  CAS  PubMed  Google Scholar 

  44. Teo AE, Garg S, Shaikh LH, Zhou J, Karet Frankl FE, Gurnell M, Happerfield L, Marker A, Bienz M, Azizan EA, Brown MJ. Pregnancy, primary Aldosteronism, and adrenal CTNNB1 mutations. N Engl J Med. 2015;373:1429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beuschlein F, Looyenga BD, Bleasdale SE, Mutch C, Bavers DL, Parlow AF, Nilson JH, Hammer GD. Activin induces x-zone apoptosis that inhibits luteinizing hormone-dependent adrenocortical tumor formation in inhibin-deficient mice. Mol Cell Biol. 2003;23:3951–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vanttinen T, Liu J, Kuulasmaa T, Kivinen P, Voutilainen R. Expression of activin/inhibin signaling components in the human adrenal gland and the effects of activins and inhibins on adrenocortical steroidogenesis and apoptosis. J Endocrinol. 2003;178:479–89.

    Article  CAS  PubMed  Google Scholar 

  47. Drelon C, Berthon A, Val P. Adrenocortical cancer and IGF2: is the game over or our experimental models limited? J Clin Endocrinol Metab. 2013;98:505–7.

    Article  CAS  PubMed  Google Scholar 

  48. Fottner C, Hoeflich A, Wolf E, Weber MM. Role of the insulin-like growth factor system in adrenocortical growth control and carcinogenesis. Horm Metab Res. 2004;36:397–405.

    Article  CAS  PubMed  Google Scholar 

  49. Crickard K, Ill CR, Jaffe RB. Control of proliferation of human fetal adrenal cells in vitro. J Clin Endocrinol Metab. 1981;53:790–6.

    Article  CAS  PubMed  Google Scholar 

  50. Guasti L, Candy Sze WC, McKay T, Grose R, King PJ. FGF signalling through Fgfr2 isoform IIIb regulates adrenal cortex development. Mol Cell Endocrinol. 2013a;371:182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Finco I, LaPensee CR, Krill KT, Hammer GD. Hedgehog signaling and steroidogenesis. Annu Rev Physiol. 2015;77:105–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Drelon C, Berthon A, Mathieu M, Martinez A, Val P. Adrenal cortex tissue homeostasis and zonation: a WNT perspective. Mol Cell Endocrinol. 2015;408:156–64.

    Article  CAS  PubMed  Google Scholar 

  53. Heikkila M, Peltoketo H, Leppaluoto J, Ilves M, Vuolteenaho O, Vainio S. Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production. Endocrinology. 2002;143:4358–65.

    Article  CAS  PubMed  Google Scholar 

  54. Vidal V, Sacco S, Rocha AS, da Silva F, Panzolini C, Dumontet T, Doan TM, Shan J, Rak-Raszewska A, Bird T, Vainio S, Martinez A, Schedl A. The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes Dev. 2016;30:1389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burns MP, Rebeck GW. Intracellular cholesterol homeostasis and amyloid precursor protein processing. Biochim Biophys Acta. 2010;1801:853–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Horton JD, Goldstein JL, Brown MS. SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb Symp Quant Biol. 2002;67:491–8.

    Article  CAS  PubMed  Google Scholar 

  57. Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006;124:35–46.

    Article  CAS  PubMed  Google Scholar 

  58. Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A. 1999;96:11041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Braamskamp MJ, Kusters DM, Wiegman A, Avis HJ, Wijburg FA, Kastelein JJ, van Trotsenburg AS, Hutten BA. Gonadal steroids, gonadotropins and DHEAS in young adults with familial hypercholesterolemia who had initiated statin therapy in childhood. Atherosclerosis. 2015;241:427–32.

    Article  CAS  PubMed  Google Scholar 

  60. Laue L, Hoeg JM, Barnes K, Loriaux DL, Chrousos GP. The effect of mevinolin on steroidogenesis in patients with defects in the low density lipoprotein receptor pathway. J Clin Endocrinol Metab. 1987;64:531–5.

    Article  CAS  PubMed  Google Scholar 

  61. Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol. 2016;165(Pt A):18–37.

    PubMed  Google Scholar 

  62. Capponi AM. Regulation of cholesterol supply for mineralocorticoid biosynthesis. Trends Endocrinol Metab. 2002;13:118–21.

    Article  CAS  PubMed  Google Scholar 

  63. Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res. 2011;52:2111–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Burton BK, Balwani M, Feillet F, Baric I, Burrow TA, Camarena Grande C, Coker M, Consuelo-Sanchez A, Deegan P, Di Rocco M, Enns GM, Erbe R, Ezgu F, Ficicioglu C, Furuya KN, Kane J, Laukaitis C, Mengel E, Neilan EG, Nightingale S, Peters H, Scarpa M, Schwab KO, Smolka V, Valayannopoulos V, Wood M, Goodman Z, Yang Y, Eckert S, Rojas-Caro S, Quinn AG. A phase 3 trial of Sebelipase Alfa in Lysosomal acid lipase deficiency. N Engl J Med. 2015;373:1010–20.

    Article  CAS  PubMed  Google Scholar 

  65. Peake KB, Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett. 2010;584:2731–9.

    Article  CAS  PubMed  Google Scholar 

  66. Vanier MT. Complex lipid trafficking in Niemann-Pick disease type C. J Inherit Metab Dis. 2015;38:187–99.

    Article  CAS  PubMed  Google Scholar 

  67. Strauss JF 3rd, Kishida T, Christenson LK, Fujimoto T, Hiroi H. START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol Cell Endocrinol. 2003;202:59–65.

    Article  CAS  PubMed  Google Scholar 

  68. Iyer LM, Koonin EV, Aravind L. Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins. 2001;43:134–44.

    Article  CAS  PubMed  Google Scholar 

  69. Alpy F, Stoeckel ME, Dierich A, Escola JM, Wendling C, Chenard MP, Vanier MT, Gruenberg J, Tomasetto C, Rio MC. The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem. 2001;276:4261–9.

    Article  CAS  PubMed  Google Scholar 

  70. Shen WJ, Azhar S, Kraemer FB. ACTH regulation of adrenal SR-B1. Front Endocrinol (Lausanne). 2016;7:42.

    Google Scholar 

  71. Rone MB, Fan J, Papadopoulos V. Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim Biophys Acta. 2009;1791:646–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Connelly MA, Kellner-Weibel G, Rothblat GH, Williams DL. SR-BI-directed HDL-cholesteryl ester hydrolysis. J Lipid Res. 2003;44:331–41.

    Article  CAS  PubMed  Google Scholar 

  73. Kraemer FB, Shen WJ, Harada K, Patel S, Osuga J, Ishibashi S, Azhar S. Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol Endocrinol. 2004;18:549–57.

    Article  CAS  PubMed  Google Scholar 

  74. Plump AS, Erickson SK, Weng W, Partin JS, Breslow JL, Williams DL. Apolipoprotein A-I is required for cholesteryl ester accumulation in steroidogenic cells and for normal adrenal steroid production. J Clin Invest. 1996;97:2660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Taylor MJ, Sanjanwala AR, Morin EE, Rowland-Fisher E, Anderson K, Schwendeman A, Rainey WE. Synthetic high-density lipoprotein (sHDL) inhibits steroid production in HAC15 adrenal cells. Endocrinology. 2016;157:3122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cherradi N, Pardo B, Greenberg AS, Kraemer FB, Capponi AM. Angiotensin II activates cholesterol ester hydrolase in bovine adrenal glomerulosa cells through phosphorylation mediated by p42/p44 mitogen-activated protein kinase. Endocrinology. 2003;144:4905–15.

    Article  CAS  PubMed  Google Scholar 

  77. Shen WJ, Patel S, Natu V, Hong R, Wang J, Azhar S, Kraemer FB. Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal. J Biol Chem. 2003;278:43870–6.

    Article  CAS  PubMed  Google Scholar 

  78. LaPensee CR, Mann JE, Rainey WE, Crudo V, Hunt SW 3rd, Hammer GD. ATR-101, a selective and potent inhibitor of acyl-CoA Acyltransferase 1, induces apoptosis in H295R adrenocortical cells and in the adrenal cortex of dogs. Endocrinology. 2016;157:1775–88.

    Article  CAS  PubMed  Google Scholar 

  79. Sbiera S, Leich E, Liebisch G, Sbiera I, Schirbel A, Wiemer L, Matysik S, Eckhardt C, Gardill F, Gehl A, Kendl S, Weigand I, Bala M, Ronchi CL, Deutschbein T, Schmitz G, Rosenwald A, Allolio B, Fassnacht M, Kroiss M. Mitotane inhibits sterol-O-acyl Transferase 1 triggering lipid-mediated endoplasmic reticulum stress and apoptosis in adrenocortical carcinoma cells. Endocrinology. 2015;156:3895–908.

    Article  CAS  PubMed  Google Scholar 

  80. Scheidt HA, Haralampiev I, Theisgen S, Schirbel A, Sbiera S, Huster D, Kroiss M, Muller P. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition. Mol Cell Endocrinol. 2016;428:68–81.

    Article  CAS  PubMed  Google Scholar 

  81. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13:1211–33.

    Article  CAS  PubMed  Google Scholar 

  82. Crivello JF, Jefcoate CR. Intracellular movement of cholesterol in rat adrenal cells. Kinetics and effects of inhibitors. J Biol Chem. 1980;255:8144–51.

    CAS  PubMed  Google Scholar 

  83. Privalle CT, Crivello JF, Jefcoate CR. Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc Natl Acad Sci U S A. 1983;80:702–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hall PF, Almahbobi G. Roles of microfilaments and intermediate filaments in adrenal steroidogenesis. Microsc Res Tech. 1997;36:463–79.

    Article  CAS  PubMed  Google Scholar 

  85. Li D, Sewer MB. RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking. Endocrinology. 2010;151:4313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sewer MB, Li D. Regulation of steroid hormone biosynthesis by the cytoskeleton. Lipids. 2008;43:1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arbuzova A, Schmitz AA, Vergeres G. Cross-talk unfolded: MARCKS proteins. Biochem J. 2002;362:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Betancourt-Calle S, Bollag WB, Jung EM, Calle RA, Rasmussen H. Effects of angiotensin II and adrenocorticotropic hormone on myristoylated alanine-rich C-kinase substrate phosphorylation in glomerulosa cells. Mol Cell Endocrinol. 1999;154:1–9.

    Article  CAS  PubMed  Google Scholar 

  89. Kraemer FB, Khor VK, Shen WJ, Azhar S. Cholesterol ester droplets and steroidogenesis. Mol Cell Endocrinol. 2013;371:15–9.

    Article  CAS  PubMed  Google Scholar 

  90. Barbosa AD, Savage DB, Siniossoglou S. Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol. 2015;35:91–7.

    Article  CAS  PubMed  Google Scholar 

  91. Lin Y, Hou X, Shen WJ, Hanssen R, Khor VK, Cortez Y, Roseman AN, Azhar S, Kraemer FB. SNARE-mediated cholesterol movement to mitochondria supports Steroidogenesis in rodent cells. Mol Endocrinol. 2016;30:234–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jagerstrom S, Polesie S, Wickstrom Y, Johansson BR, Schroder HD, Hojlund K, Bostrom P. Lipid droplets interact with mitochondria using SNAP23. Cell Biol Int. 2009;33:934–40.

    Article  PubMed  CAS  Google Scholar 

  93. Enrich C, Rentero C, Hierro A, Grewal T. Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. J Cell Sci. 2015;128:1071–81.

    Article  CAS  PubMed  Google Scholar 

  94. Kraemer FB, Shen WJ, Azhar S. SNAREs and cholesterol movement for steroidogenesis. Mol Cell: Endocrinol; 2016.

    Google Scholar 

  95. Midzak A, Papadopoulos V. Adrenal mitochondria and Steroidogenesis: from individual proteins to functional protein assemblies. Front Endocrinol (Lausanne). 2016;7:106.

    Google Scholar 

  96. Prasad M, Kaur J, Pawlak KJ, Bose M, Whittal RM, Bose HS. Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction. J Biol Chem. 2015;290:2604–16.

    Article  CAS  PubMed  Google Scholar 

  97. Doghman-Bouguerra M, Lalli E. The ER-mitochondria couple: in life and death from steroidogenesis to tumorigenesis. Mol Cell Endocrinol. 2016;441:176–84.

    Article  PubMed  CAS  Google Scholar 

  98. Vance JE. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta. 2014;1841:595–609.

    Article  CAS  PubMed  Google Scholar 

  99. Doghman-Bouguerra M, Granatiero V, Sbiera S, Sbiera I, Lacas-Gervais S, Brau F, Fassnacht M, Rizzuto R, Lalli E. FATE1 antagonizes calcium- and drug-induced apoptosis by uncoupling ER and mitochondria. EMBO Rep. 2016;17(9):1264–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hayashi T, Su TP. Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther. 2003;306:718–25.

    Article  CAS  PubMed  Google Scholar 

  101. Marriott KS, Prasad M, Thapliyal V, Bose HS. Sigma-1 receptor at the mitochondrial-associated endoplasmic reticulum membrane is responsible for mitochondrial metabolic regulation. J Pharmacol Exp Ther. 2012;343:578–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jinn S, Brandis KA, Ren A, Chacko A, Dudley-Rucker N, Gale SE, Sidhu R, Fujiwara H, Jiang H, Olsen BN, Schaffer JE, Ory DS. snoRNA U17 regulates cellular cholesterol trafficking. Cell Metab. 2015;21:855–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ferguson JJ Jr. Protein synthesis and Adrenocorticotropin responsiveness. J Biol Chem. 1963;238:2754–9.

    CAS  PubMed  Google Scholar 

  104. Garren LD, Ney RL, Davis WW. Studies on the role of protein synthesis in the regulation of corticosterone production by adrenocorticotropic hormone in vivo. Proc Natl Acad Sci U S A. 1965;53:1443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269:28314–22.

    CAS  PubMed  Google Scholar 

  106. Miller WL. Mechanism of StAR's regulation of mitochondrial cholesterol import. Mol Cell Endocrinol. 2007a;265-266:46–50.

    Article  CAS  PubMed  Google Scholar 

  107. Duarte A, Castillo AF, Podesta EJ, Poderoso C. Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria. PLoS One. 2014;9:e100387.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod. 2009;15:321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pon LA, Hartigan JA, Orme-Johnson NR. Acute ACTH regulation of adrenal corticosteroid biosynthesis. Rapid accumulation of a phosphoprotein. J Biol Chem. 1986;261:13309–16.

    CAS  PubMed  Google Scholar 

  110. Pon LA, Orme-Johnson NR. Acute stimulation of corpus luteum cells by gonadotrophin or adenosine 3′,5′-monophosphate causes accumulation of a phosphoprotein concurrent with acceleration of steroid synthesis. Endocrinology. 1988;123:1942–8.

    Article  CAS  PubMed  Google Scholar 

  111. Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari H, Stocco DM, Strauss JF 3rd. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem. 1997;272:32656–62.

    Article  CAS  PubMed  Google Scholar 

  112. Manna PR, Wang XJ, Stocco DM. Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids. 2003;68:1125–34.

    Article  CAS  PubMed  Google Scholar 

  113. Tremblay JJ, Viger RS. Novel roles for GATA transcription factors in the regulation of steroidogenesis. J Steroid Biochem Mol Biol. 2003;85:291–8.

    Article  CAS  PubMed  Google Scholar 

  114. Cummins CL, Volle DH, Zhang Y, McDonald JG, Sion B, Lefrancois-Martinez AM, Caira F, Veyssiere G, Mangelsdorf DJ, Lobaccaro JM. Liver X receptors regulate adrenal cholesterol balance. J Clin Invest. 2006;116:1902–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Manna PR, Cohen-Tannoudji J, Counis R, Garner CW, Huhtaniemi I, Kraemer FB, Stocco DM. Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. J Biol Chem. 2013;288:8505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Arakane F, Sugawara T, Nishino H, Liu Z, Holt JA, Pain D, Stocco DM, Miller WL, Strauss JF 3rd. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of StAR action. Proc Natl Acad Sci U S A. 1996;93:13731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bose HS, Whittal RM, Baldwin MA, Miller WL. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci U S A. 1999;96:7250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Artemenko IP, Zhao D, Hales DB, Hales KH, Jefcoate CR. Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J Biol Chem. 2001;276:46583–96.

    Article  CAS  PubMed  Google Scholar 

  119. Bahat A, Perlberg S, Melamed-Book N, Lauria I, Langer T, Orly J. StAR enhances transcription of genes encoding the mitochondrial proteases involved in its own degradation. Mol Endocrinol. 2014;28:208–24.

    Article  PubMed  CAS  Google Scholar 

  120. Bose HS, Sugawara T, Strauss JF 3rd, Miller WL. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med. 1996;335:1870–8.

    Article  CAS  PubMed  Google Scholar 

  121. Lin D, Sugawara T, Strauss JF 3rd, Clark BJ, Stocco DM, Saenger P, Rogol A, Miller WL. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995;267:1828–31.

    Article  CAS  PubMed  Google Scholar 

  122. Caron KM, Soo SC, Wetsel WC, Stocco DM, Clark BJ, Parker KL. Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci U S A. 1997;94:11540–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hasegawa T, Zhao L, Caron KM, Majdic G, Suzuki T, Shizawa S, Sasano H, Parker KL. Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrinol. 2000;14:1462–71.

    Article  CAS  PubMed  Google Scholar 

  124. Sasaki G, Ishii T, Jeyasuria P, Jo Y, Bahat A, Orly J, Hasegawa T, Parker KL. Complex role of the mitochondrial targeting signal in the function of steroidogenic acute regulatory protein revealed by bacterial artificial chromosome transgenesis in vivo. Mol Endocrinol. 2008;22:951–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rone MB, Midzak AS, Issop L, Rammouz G, Jagannathan S, Fan J, Ye X, Blonder J, Veenstra T, Papadopoulos V. Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol Endocrinol. 2012;26:1868–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26:771–90.

    Article  CAS  PubMed  Google Scholar 

  127. Shoshan-Barmatz V, Keinan N, Zaid H. Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr. 2008;40:183–91.

    Article  CAS  PubMed  Google Scholar 

  128. Bose M, Whittal RM, Miller WL, Bose HS. Steroidogenic activity of StAR requires contact with mitochondrial VDAC1 and phosphate carrier protein. J Biol Chem. 2008;283:8837–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Selvaraj V, Stocco DM. The changing landscape in translocator protein (TSPO) function. Trends Endocrinol Metab. 2015;26:341–8.

    Article  CAS  PubMed  Google Scholar 

  130. Krueger KE, Papadopoulos V. Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. J Biol Chem. 1990;265:15015–22.

    CAS  PubMed  Google Scholar 

  131. Lacapere JJ, Delavoie F, Li H, Peranzi G, Maccario J, Papadopoulos V, Vidic B. Structural and functional study of reconstituted peripheral benzodiazepine receptor. Biochem Biophys Res Commun. 2001;284:536–41.

    Article  CAS  PubMed  Google Scholar 

  132. Li H, Yao Z, Degenhardt B, Teper G, Papadopoulos V. Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc Natl Acad Sci U S A. 2001b;98:1267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. West LA, Horvat RD, Roess DA, Barisas BG, Juengel JL, Niswender GD. Steroidogenic acute regulatory protein and peripheral-type benzodiazepine receptor associate at the mitochondrial membrane. Endocrinology. 2001;142:502–5.

    Article  CAS  PubMed  Google Scholar 

  134. Papadopoulos V, Aghazadeh Y, Fan J, Campioli E, Zirkin B, Midzak A. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol. 2015;408:90–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Selvaraj V, Stocco DM, Tu LN. Minireview: translocator protein (TSPO) and steroidogenesis: a reappraisal. Mol Endocrinol. 2015;29:490–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Selvaraj V, Tu LN, Stocco DM. Crucial role reported for TSPO in viability and Steroidogenesis is a misconception. Commentary: Conditional Steroidogenic cell-targeted deletion of TSPO unveils a crucial role in viability and hormone-dependent steroid formation. Front Endocrinol (Lausanne). 2016;7:91.

    Google Scholar 

  137. Banati RB, Middleton RJ, Chan R, Hatty CR, Kam WW, Quin C, Graeber MB, Parmar A, Zahra D, Callaghan P, Fok S, Howell NR, Gregoire M, Szabo A, Pham T, Davis E, Liu GJ. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nat Commun. 2014;5:5452.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fan J, Campioli E, Midzak A, Culty M, Papadopoulos V. Conditional steroidogenic cell-targeted deletion of TSPO unveils a crucial role in viability and hormone-dependent steroid formation. Proc Natl Acad Sci U S A. 2015;112:7261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tu LN, Morohaku K, Manna PR, Pelton SH, Butler WR, Stocco DM, Selvaraj V. Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. J Biol Chem. 2014;289:27444–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tu LN, Zhao AH, Stocco DM, Selvaraj V. PK11195 effect on steroidogenesis is not mediated through the translocator protein (TSPO). Endocrinology. 2015;156:1033–9.

    Article  CAS  PubMed  Google Scholar 

  141. Tu LN, Zhao AH, Hussein M, Stocco DM, Selvaraj V. Translocator protein (TSPO) affects Mitochondrial fatty acid oxidation in Steroidogenic cells. Endocrinology. 2016;157:1110–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li H, Degenhardt B, Tobin D, Yao ZX, Tasken K, Papadopoulos V. Identification, localization, and function in steroidogenesis of PAP7: a peripheral-type benzodiazepine receptor- and PKA (RIalpha)-associated protein. Mol Endocrinol. 2001a;15:2211–28.

    CAS  PubMed  Google Scholar 

  143. Liu J, Rone MB, Papadopoulos V. Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J Biol Chem. 2006;281:38879–93.

    Article  CAS  PubMed  Google Scholar 

  144. Poderoso C, Maloberti P, Duarte A, Neuman I, Paz C, Cornejo Maciel F, Podesta EJ. Hormonal activation of a kinase cascade localized at the mitochondria is required for StAR protein activity. Mol Cell Endocrinol. 2009;300:37–42.

    Article  CAS  PubMed  Google Scholar 

  145. Carrasco GA, Van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol. 2003;463:235–72.

    Article  CAS  PubMed  Google Scholar 

  146. Habib KE, Gold PW, Chrousos GP. Neuroendocrinology of stress. Endocrinol Metab Clin N Am. 2001;30:695–728.

    Article  CAS  Google Scholar 

  147. Itoi K, Seasholtz AF, Watson SJ. Cellular and extracellular regulatory mechanisms of hypothalamic corticotropin-releasing hormone neurons. Endocr J. 1998;45:13–33.

    Article  CAS  PubMed  Google Scholar 

  148. Clark AJ. 60 YEARS OF POMC: the proopiomelanocortin gene: discovery, deletion and disease. J Mol Endocrinol. 2015;56(4):T27–37.

    Article  PubMed  CAS  Google Scholar 

  149. Raffin-Sanson ML, de Keyzer Y, Bertagna X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol. 2003;149:79–90.

    Article  CAS  PubMed  Google Scholar 

  150. Ruggiero C, Lalli E. Impact of ACTH Signaling on transcriptional regulation of Steroidogenic genes. Front Endocrinol (Lausanne). 2016;7:24.

    Google Scholar 

  151. Richards EM, Hua Y, Keller-Wood M. Pharmacology and physiology of ovine corticosteroid receptors. Neuroendocrinology. 2003;77:2–14.

    Article  CAS  PubMed  Google Scholar 

  152. Gomez-Sanchez EP. Brain mineralocorticoid receptors in cognition and cardiovascular homeostasis. Steroids. 2014b;91:20–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gallo-Payet N, Battista MC. Steroidogenesis-adrenal cell signal transduction. Compr Physiol. 2014;4:889–964.

    Article  PubMed  Google Scholar 

  154. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.

    Article  CAS  PubMed  Google Scholar 

  155. Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest. 2010;120:2600–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ota T, Fustin JM, Yamada H, Doi M, Okamura H. Circadian clock signals in the adrenal cortex. Mol Cell Endocrinol. 2012;349:30–7.

    Article  CAS  PubMed  Google Scholar 

  157. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–6.

    Article  CAS  PubMed  Google Scholar 

  158. Park SY, Walker JJ, Johnson NW, Zhao Z, Lightman SL, Spiga F. Constant light disrupts the circadian rhythm of steroidogenic proteins in the rat adrenal gland. Mol Cell Endocrinol. 2013;371:114–23.

    Article  CAS  PubMed  Google Scholar 

  159. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289:2344–7.

    Article  CAS  PubMed  Google Scholar 

  160. Barclay JL, Shostak A, Leliavski A, Tsang AH, Johren O, Muller-Fielitz H, Landgraf D, Naujokat N, van der Horst GT, Oster H. High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in cry-deficient mice. Am J Physiol Endocrinol Metab. 2013;304:E1053–63.

    Article  CAS  PubMed  Google Scholar 

  161. Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 2011;480:552–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Leliavski A, Shostak A, Husse J, Oster H. Impaired glucocorticoid production and response to stress in Arntl-deficient male mice. Endocrinology. 2014;155:133–42.

    Article  PubMed  CAS  Google Scholar 

  163. Oster H, Damerow S, Hut RA, Eichele G. Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J Biol Rhythm. 2006;21:350–61.

    Article  CAS  Google Scholar 

  164. Son GH, Chung S, Choe HK, Kim HD, Baik SM, Lee H, Lee HW, Choi S, Sun W, Kim H, Cho S, Lee KH, Kim K. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci U S A. 2008;105:20970–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. Obesity and metabolic syndrome in circadian clock mutant mice. Science. 2005;308:1043–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Guran T, Buonocore F, Saka N, Ozbek MN, Aycan Z, Bereket A, Bas F, Darcan S, Bideci A, Guven A, Demir K, Akinci A, Buyukinan M, Aydin BK, Turan S, Agladioglu SY, Atay Z, Abali ZY, Tarim O, Catli G, Yuksel B, Akcay T, Yildiz M, Ozen S, Doger E, Demirbilek H, Ucar A, Isik E, Ozhan B, Bolu S, Ozgen IT, Suntharalingham JP, Achermann JC. Rare causes of primary adrenal insufficiency: genetic and clinical characterization of a large Nationwide cohort. J Clin Endocrinol Metab. 2016;101:284–92.

    Article  CAS  PubMed  Google Scholar 

  167. de Joussineau C, Sahut-Barnola I, Levy I, Saloustros E, Val P, Stratakis CA, Martinez A. The cAMP pathway and the control of adrenocortical development and growth. Mol Cell Endocrinol. 2012;351:28–36.

    Article  PubMed  CAS  Google Scholar 

  168. Sahut-Barnola I, de Joussineau C, Val P, Lambert-Langlais S, Damon C, Lefrancois-Martinez AM, Pointud JC, Marceau G, Sapin V, Tissier F, Ragazzon B, Bertherat J, Kirschner LS, Stratakis CA, Martinez A. Cushing's syndrome and fetal features resurgence in adrenal cortex-specific Prkar1a knockout mice. PLoS Genet. 2010;6:e1000980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. de Joussineau C, Sahut-Barnola I, Tissier F, Dumontet T, Drelon C, Batisse-Lignier M, Tauveron I, Pointud JC, Lefrancois-Martinez AM, Stratakis CA, Bertherat J, Val P, Martinez A. mTOR pathway is activated by PKA in adrenocortical cells and participates in vivo to apoptosis resistance in primary pigmented nodular adrenocortical disease (PPNAD). Hum Mol: Genet; 2014.

    Google Scholar 

  170. Beuschlein F, Fassnacht M, Assie G, Calebiro D, Stratakis CA, Osswald A, Ronchi CL, Wieland T, Sbiera S, Faucz FR, Schaak K, Schmittfull A, Schwarzmayr T, Barreau O, Vezzosi D, Rizk-Rabin M, Zabel U, Szarek E, Salpea P, Forlino A, Vetro A, Zuffardi O, Kisker C, Diener S, Meitinger T, Lohse MJ, Reincke M, Bertherat J, Strom TM, Allolio B. Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome. N Engl J Med. 2014;370:1019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ronchi CL, Di Dalmazi G, Faillot S, Sbiera S, Assie G, Weigand I, Calebiro D, Schwarzmayr T, Appenzeller S, Rubin B, Waldmann J, Scaroni C, Bartsch DK, Mantero F, Mannelli M, Kastelan D, Chiodini I, Bertherat J, Reincke M, Strom TM, Fassnacht M, Beuschlein F. Genetic landscape of sporadic unilateral adrenocortical adenomas without PRKACA p.Leu206Arg mutation. J Clin Endocrinol Metab. 2016;101(9):3526–38.

    Article  CAS  PubMed  Google Scholar 

  172. Aumo L, Rusten M, Mellgren G, Bakke M, Lewis AE. Functional roles of protein kinase a (PKA) and exchange protein directly activated by 3′,5′-cyclic adenosine 5′-monophosphate (cAMP) 2 (EPAC2) in cAMP-mediated actions in adrenocortical cells. Endocrinology. 2010;151:2151–61.

    Article  CAS  PubMed  Google Scholar 

  173. Lewis AE, Aesoy R, Bakke M. Role of EPAC in cAMP-mediated actions in adrenocortical cells. Front Endocrinol (Lausanne). 2016;7:63.

    Google Scholar 

  174. Bos JL. Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci. 2006;31:680–6.

    Article  CAS  PubMed  Google Scholar 

  175. Enyeart JA, Enyeart JJ. Metabolites of an Epac-selective cAMP analog induce cortisol synthesis by adrenocortical cells through a cAMP-independent pathway. PLoS One. 2009;4:e6088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Horvath A, Stratakis CA. Unraveling the molecular basis of micronodular adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes. 2008;15:227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev. 2014;35:195–233.

    Article  CAS  PubMed  Google Scholar 

  178. Horvath A, Giatzakis C, Tsang K, Greene E, Osorio P, Boikos S, Libe R, Patronas Y, Robinson-White A, Remmers E, Bertherat J, Nesterova M, Stratakis CA. A cAMP-specific phosphodiesterase (PDE8B) that is mutated in adrenal hyperplasia is expressed widely in human and mouse tissues: a novel PDE8B isoform in human adrenal cortex. Eur J Hum Genet. 2008;16(10):1245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Abdou HS, Bergeron F, Tremblay JJ. A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis. Mol Cell Biol. 2014;34:4257–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Tremblay JJ. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids. 2015;103:3–10.

    Article  CAS  PubMed  Google Scholar 

  181. Dada L, Cornejo Maciel F, Neuman I, Mele PG, Maloberti P, Paz C, Cymeryng C, Finkielstein C, Mendez CF, Podesta EJ. Cytosolic and mitochondrial proteins as possible targets of cycloheximide effect on adrenal steroidogenesis. Endocr Res. 1996;22:533–9.

    Article  CAS  PubMed  Google Scholar 

  182. Wang X, Walsh LP, Reinhart AJ, Stocco DM. The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J Biol Chem. 2000;275:20204–9.

    Article  CAS  PubMed  Google Scholar 

  183. Kang MJ, Fujino T, Sasano H, Minekura H, Yabuki N, Nagura H, Iijima H, Yamamoto TT. A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci U S A. 1997;94:2880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lewin TM, Van Horn CG, Krisans SK, Coleman RA. Rat liver acyl-CoA synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane. Arch Biochem Biophys. 2002;404:263–70.

    Article  CAS  PubMed  Google Scholar 

  185. Wilson DB, Prescott SM, Majerus PW. Discovery of an arachidonoyl coenzyme a synthetase in human platelets. J Biol Chem. 1982;257:3510–5.

    CAS  PubMed  Google Scholar 

  186. Soupene E, Kuypers FA. Mammalian long-chain acyl-CoA synthetases. Exp Biol Med (Maywood). 2008;233:507–21.

    Article  CAS  Google Scholar 

  187. Cornejo Maciel F, Maloberti P, Neuman I, Cano F, Castilla R, Castillo F, Paz C, Podesta EJ. An arachidonic acid-preferring acyl-CoA synthetase is a hormone-dependent and obligatory protein in the signal transduction pathway of steroidogenic hormones. J Mol Endocrinol. 2005;34:655–66.

    Article  PubMed  CAS  Google Scholar 

  188. Maloberti P, Castilla R, Castillo F, Cornejo Maciel F, Mendez CF, Paz C, Podesta EJ. Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. FEBS J. 2005;272:1804–14.

    Article  CAS  PubMed  Google Scholar 

  189. Cooke M, Mele P, Maloberti P, Duarte A, Poderoso C, Orlando U, Paz C, Cornejo Maciel F, Podesta EJ. Tyrosine phosphatases as key regulators of StAR induction and cholesterol transport: SHP2 as a potential tyrosine phosphatase involved in steroid synthesis. Mol Cell Endocrinol. 2011;336:63–9.

    Article  CAS  PubMed  Google Scholar 

  190. Paz C, Cornejo Maciel F, Gorostizaga A, Castillo AF, Mori Sequeiros Garcia MM, Maloberti PM, Orlando UD, Mele PG, Poderoso C, Podesta EJ. Role of protein phosphorylation and tyrosine phosphatases in the adrenal regulation of steroid synthesis and Mitochondrial function. Front Endocrinol (Lausanne). 2016;7:60.

    Google Scholar 

  191. Houslay MD, Kolch W. Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol Pharmacol. 2000;58:659–68.

    Article  CAS  PubMed  Google Scholar 

  192. Lefrancois-Martinez AM, Blondet-Trichard A, Binart N, Val P, Chambon C, Sahut-Barnola I, Pointud JC, Martinez A. Transcriptional control of adrenal steroidogenesis: novel connection between Janus kinase (JAK) 2 protein and protein kinase a (PKA) through stabilization of cAMP response element-binding protein (CREB) transcription factor. J Biol Chem. 2011;286:32976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bornstein SR, Engeland WC, Ehrhart-Bornstein M, Herman JP. Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab. 2008;19:175–80.

    Article  CAS  PubMed  Google Scholar 

  194. Ansurudeen I, Willenberg HS, Kopprasch S, Krug AW, Ehrhart-Bornstein M, Bornstein SR. Endothelial factors mediate aldosterone release via PKA-independent pathways. Mol Cell Endocrinol. 2009;300:66–70.

    Article  CAS  PubMed  Google Scholar 

  195. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, Hauner H, McCann SM, Scherbaum WA, Bornstein SR. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100:14211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Spät A, Hunyady L, Szanda G. Signaling interactions in the adrenal cortex. Front Endocrinol (Lausanne). 2016;7:17.

    Google Scholar 

  197. Nogueira EF, Bollag WB, Rainey WE. Angiotensin II regulation of adrenocortical gene transcription. Mol Cell Endocrinol. 2009;302:230–6.

    Article  CAS  PubMed  Google Scholar 

  198. Clark BJ, Combs R. Angiotensin II and cyclic adenosine 3′,5′-monophosphate induce human steroidogenic acute regulatory protein transcription through a common steroidogenic factor-1 element. Endocrinology. 1999;140:4390–8.

    Article  CAS  PubMed  Google Scholar 

  199. Zennaro MC, Boulkroun S, Fernandes-Rosa F. An update on novel mechanisms of primary aldosteronism. J Endocrinol. 2015;224:R63–77.

    Article  CAS  PubMed  Google Scholar 

  200. Vaidya A, Hamrahian A, Auchus RJ. Genetics of primary Aldosteronism. Endocr Pract. 2015;21(5):1–15.

    Google Scholar 

  201. Spät A. Glomerulosa cell--a unique sensor of extracellular K+ concentration. Mol Cell Endocrinol. 2004;217:23–6.

    Article  PubMed  CAS  Google Scholar 

  202. Himathongkam T, Dluhy RG, Williams GH. Potassim-aldosterone-renin interrelationships. J Clin Endocrinol Metab. 1975;41:153–9.

    Article  CAS  PubMed  Google Scholar 

  203. Rege J, Nakamura Y, Satoh F, Morimoto R, Kennedy MR, Layman LC, Honma S, Sasano H, Rainey WE. Liquid chromatography-tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation. J Clin Endocrinol Metab. 2013;98:1182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Udhane SS, Flück CE. Regulation of human (adrenal) androgen biosynthesis-new insights from novel throughput technology studies. Biochem Pharmacol. 2016;102:20–33.

    Article  CAS  PubMed  Google Scholar 

  205. Kirschner MA, Bardin CW. Androgen production and metabolism in normal and virilized women. Metabolism. 1972;21:667–88.

    Article  CAS  PubMed  Google Scholar 

  206. Ferraldeschi R, Sharifi N, Auchus RJ, Attard G. Molecular pathways: inhibiting steroid biosynthesis in prostate cancer. Clin Cancer Res. 2013;19:3353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Turcu AF, Nanba AT, Chomic R, Upadhyay SK, Giordano T, Shields JJ, Merke DP, Rainey W, Auchus R. Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. Eur J Endocrinol. 2016;174(5):601–9.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The regulation of steroid action by Sulfation and Desulfation. Endocr Rev. 2015;36:526–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Noordam C, Dhir V, McNelis JC, Schlereth F, Hanley NA, Krone N, Smeitink JA, Smeets R, Sweep FC, Claahsen-van der Grinten HL, Arlt W. Inactivating PAPSS2 mutations in a patient with premature pubarche. N Engl J Med. 2009;360:2310–8.

    Article  CAS  PubMed  Google Scholar 

  210. Migeon CJ, Keller AR, Lawrence B, Shepard TH 2nd. Dehydroepiandrosterone and androsterone levels in human plasma: effect of age and sex; day-to-day and diurnal variations. J Clin Endocrinol Metab. 1957;17:1051–62.

    Article  CAS  PubMed  Google Scholar 

  211. Brett EM, Auchus RJ. Genetic forms of adrenal insufficiency. Endocr Pract. 2015;1-17

    Google Scholar 

  212. Pandey AV, Mellon SH, Miller WL. Protein phosphatase 2A and phosphoprotein SET regulate androgen production by P450c17. J Biol Chem. 2003;278:2837–44.

    Article  CAS  PubMed  Google Scholar 

  213. Tee MK, Miller WL. Phosphorylation of human cytochrome P450c17 by p38alpha selectively increases 17,20 lyase activity and androgen biosynthesis. J Biol Chem. 2013;288:23903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Miller WL, Tee MK. The post-translational regulation of 17,20 lyase activity. Mol Cell Endocrinol. 2015;408:99–106.

    Article  CAS  PubMed  Google Scholar 

  215. Rege J, Nishimoto HK, Nishimoto K, Rodgers RJ, Auchus RJ, Rainey WE. Bone morphogenetic protein-4 (BMP4): a paracrine regulator of human adrenal C19 steroid synthesis. Endocrinology. 2015;156:2530–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kempna P, Marti N, Udhane S, Flück CE. Regulation of androgen biosynthesis - a short review and preliminary results from the hyperandrogenic starvation NCI-H295R cell model. Mol Cell Endocrinol. 2015;408:124–32.

    Article  CAS  PubMed  Google Scholar 

  217. Baba T, Otake H, Sato T, Miyabayashi K, Shishido Y, Wang CY, Shima Y, Kimura H, Yagi M, Ishihara Y, Hino S, Ogawa H, Nakao M, Yamazaki T, Kang D, Ohkawa Y, Suyama M, Chung BC, Morohashi K. Glycolytic genes are targets of the nuclear receptor Ad4BP/SF-1. Nat Commun. 2014;5:3634.

    Article  CAS  PubMed  Google Scholar 

  218. Ruggiero C, Doghman M, Lalli E. How genomic studies have improved our understanding of the mechanisms of transcriptional regulation by NR5A nuclear receptors. Mol Cell Endocrinol. 2014;408:138–44.

    Article  PubMed  CAS  Google Scholar 

  219. Crawford PA, Sadovsky Y, Milbrandt J. Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage. Mol Cell Biol. 1997;17:3997–4006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mizutani T, Kawabe S, Ishikane S, Imamichi Y, Umezawa A, Miyamoto K. Identification of novel steroidogenic factor 1 (SF-1)-target genes and components of the SF-1 nuclear complex. Mol Cell Endocrinol. 2015;408:133–7.

    Article  CAS  PubMed  Google Scholar 

  221. Urs AN, Dammer E, Kelly S, Wang E, Merrill AH Jr, Sewer MB. Steroidogenic factor-1 is a sphingolipid binding protein. Mol Cell Endocrinol. 2007;265-266:174–8.

    Article  CAS  PubMed  Google Scholar 

  222. Blind RD, Suzawa M, Ingraham HA. Direct modification and activation of a nuclear receptor-PIP2 complex by the inositol lipid kinase IPMK. Sci Signal. 2012;5:ra44.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Doghman M, Karpova T, Rodrigues GA, Arhatte M, De MJ, Cavalli LR, Virolle V, Barbry P, Zambetti GP, Figueiredo BC, Heckert LL, Lalli E. Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol Endocrinol. 2007;21:2968–87.

    Article  CAS  PubMed  Google Scholar 

  224. Figueiredo BC, Cavalli LR, Pianovski MA, Lalli E, Sandrini R, Ribeiro RC, Zambetti G, DeLacerda L, Rodrigues GA, Haddad BR. Amplification of the steroidogenic factor 1 gene in childhood adrenocortical tumors. J Clin Endocrinol Metab. 2005;90:615–9.

    Article  CAS  PubMed  Google Scholar 

  225. Lee FY, Faivre EJ, Suzawa M, Lontok E, Ebert D, Cai F, Belsham DD, Ingraham HA. Eliminating SF-1 (NR5A1) sumoylation in vivo results in ectopic hedgehog signaling and disruption of endocrine development. Dev Cell. 2011;21:315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Parker KL. The roles of steroidogenic factor 1 in endocrine development and function. Mol Cell Endocrinol. 1998;145:15–20.

    Article  CAS  PubMed  Google Scholar 

  227. Lalli E, Melner MH, Stocco DM, Sassone-Corsi P. DAX-1 blocks steroid production at multiple levels. Endocrinology. 1998;139:4237–43.

    Article  CAS  PubMed  Google Scholar 

  228. Achermann JC, Meeks JJ, Jameson JL. Phenotypic spectrum of mutations in DAX-1 and SF-1. Mol Cell Endocrinol. 2001;185:17–25.

    Article  CAS  PubMed  Google Scholar 

  229. Scheys JO, Heaton JH, Hammer GD. Evidence of adrenal failure in aging Dax1-deficient mice. Endocrinology. 2011;152:3430–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab. 2015;29:607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zazopoulos E, Lalli E, Stocco DM, Sassone-Corsi P. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature. 1997;390:311–5.

    Article  CAS  PubMed  Google Scholar 

  232. Sands WA, Palmer TM. Regulating gene transcription in response to cyclic AMP elevation. Cell Signal. 2008;20:460–6.

    Article  CAS  PubMed  Google Scholar 

  233. Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf HW, Schutz G. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron. 2002;34:245–53.

    Article  CAS  PubMed  Google Scholar 

  234. Jimenez P, Saner K, Mayhew B, Rainey WE. GATA-6 is expressed in the human adrenal and regulates transcription of genes required for adrenal androgen biosynthesis. Endocrinology. 2003;144:4285–8.

    Article  CAS  PubMed  Google Scholar 

  235. Kiiveri S, Liu J, Westerholm-Ormio M, Narita N, Wilson DB, Voutilainen R, Heikinheimo M. Differential expression of GATA-4 and GATA-6 in fetal and adult mouse and human adrenal tissue. Endocrinology. 2002;143:3136–43.

    Article  CAS  PubMed  Google Scholar 

  236. Nakamura Y, Suzuki T, Sasano H. Transcription factor GATA-6 in the human adrenocortex: association with adrenal development and aging. Endocr J. 2007;54:783–9.

    Article  PubMed  Google Scholar 

  237. Nakamura Y, Xing Y, Sasano H, Rainey WE. The mediator complex subunit 1 enhances transcription of genes needed for adrenal androgen production. Endocrinology. 2009;150:4145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol. 2008;22:781–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Flück CE, Miller WL. GATA-4 and GATA-6 modulate tissue-specific transcription of the human gene for P450c17 by direct interaction with Sp1. Mol Endocrinol. 2004;18:1144–57.

    Article  PubMed  CAS  Google Scholar 

  240. Huang YH, Lee CY, Tai PJ, Yen CC, Liao CY, Chen WJ, Liao CJ, Cheng WL, Chen RN, Wu SM, Wang CS, Lin KH. Indirect regulation of human dehydroepiandrosterone sulfotransferase family 1A member 2 by thyroid hormones. Endocrinology. 2006;147:2481–9.

    Article  CAS  PubMed  Google Scholar 

  241. Martin LJ, Taniguchi H, Robert NM, Simard J, Tremblay JJ, Viger RS. GATA factors and the nuclear receptors SF-1/LRH-1 are key mutual partners in the regulation of the human HSD3B2 promoter. Mol Endocrinol. 2005;19:2358–70.

    Article  CAS  PubMed  Google Scholar 

  242. Allen HL, Flanagan SE, Shaw-Smith C, De Franco E, Akerman I, Caswell R, Ferrer J, Hattersley AT, Ellard S. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet. 2012;44:20–2.

    Article  CAS  Google Scholar 

  243. Bonnefond A, Sand O, Guerin B, Durand E, De Graeve F, Huyvaert M, Rachdi L, Kerr-Conte J, Pattou F, Vaxillaire M, Polak M, Scharfmann R, Czernichow P, Froguel P. GATA6 inactivating mutations are associated with heart defects and, inconsistently, with pancreatic agenesis and diabetes. Diabetologia. 2012;55(10):2845–7.

    Article  CAS  PubMed  Google Scholar 

  244. Maitra M, Koenig SN, Srivastava D, Garg V. Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res. 2010;68:281–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Pihlajoki M, Gretzinger E, Cochran R, Kyrönlahti A, Schrade A, Hiller T, Sullivan L, Shoykhet M, Schoeller EL, Brooks MD, Heikinheimo M, Wilson DB. Conditional mutagenesis of Gata6 in SF1-positive cells causes gonadal-like differentiation in the adrenal cortex of mice. Endocrinology. 2013;154:1754–67.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Heikinheimo M, Pihlajoki M, Schrade A, Kyronlahti A, Wilson DB. Testicular steroidogenic cells to the rescue. Endocrinology. 2015;156:1616–9.

    Article  CAS  PubMed  Google Scholar 

  247. Padua MB, Jiang T, Morse DA, Fox SC, Hatch HM, Tevosian SG. Combined loss of the GATA4 and GATA6 transcription factors in male mice disrupts testicular development and confers adrenal-like function in the testes. Endocrinology. 2015;156(5):1873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Tevosian SG, Jimenez E, Hatch HM, Jiang T, Morse DA, Fox SC, Padua MB. Adrenal development in mice requires GATA4 and GATA6 transcription factors. Endocrinology. 2015;156:2503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kyritsi, E. M., A. Sertedaki, G. Chrousos, and E. Charmandari, 2000. Familial or sporadic adrenal hypoplasia syndrome.

    Google Scholar 

  250. Malikova J, Flück CE. Novel insight into etiology, diagnosis and management of primary adrenal insufficiency. Horm Res Paediatr. 2014;82:145–57.

    Article  CAS  PubMed  Google Scholar 

  251. Weber A, Clark AJ. Mutations of the ACTH receptor gene are only one cause of familial glucocorticoid deficiency. Hum Mol Genet. 1994;3:585–8.

    Article  CAS  PubMed  Google Scholar 

  252. Metherell LA, Chapple JP, Cooray S, David A, Becker C, Ruschendorf F, Naville D, Begeot M, Khoo B, Nurnberg P, Huebner A, Cheetham ME, Clark AJ. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat Genet. 2005;37:166–70.

    Article  CAS  PubMed  Google Scholar 

  253. Meimaridou E, Kowalczyk J, Guasti L, Hughes CR, Wagner F, Frommolt P, Nurnberg P, Mann NP, Banerjee R, Saka HN, Chapple JP, King PJ, Clark AJ, Metherell LA. Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency. Nat Genet. 2012;44:740–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Prasad R, Chan LF, Hughes CR, Kaski JP, Kowalczyk JC, Savage MO, Peters CJ, Nathwani N, Clark AJ, Storr HL, Metherell LA. Thioredoxin Reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). J Clin Endocrinol Metab. 2014;99:E1556–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Prasad R, Metherell LA, Clark AJ, Storr HL. Deficiency of ALADIN impairs redox homeostasis in human adrenal cells and inhibits steroidogenesis. Endocrinology. 2013;154:3209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Arboleda VA, Lee H, Parnaik R, Fleming A, Banerjee A, Ferraz-de-Souza B, Delot EC, Rodriguez-Fernandez IA, Braslavsky D, Bergada I, Dell'angelica EC, Nelson SF, Martinez-Agosto JA, Achermann JC, Vilain E. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet. 2012;44(7):788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hughes CR, Guasti L, Meimaridou E, Chuang CH, Schimenti JC, King PJ, Costigan C, Clark AJ, Metherell LA. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest. 2012;122:814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Narumi S, Amano N, Ishii T, Katsumata N, Muroya K, Adachi M, Toyoshima K, Tanaka Y, Fukuzawa R, Miyako K, Kinjo S, Ohga S, Ihara K, Inoue H, Kinjo T, Hara T, Kohno M, Yamada S, Urano H, Kitagawa Y, Tsugawa K, Higa A, Miyawaki M, Okutani T, Kizaki Z, Hamada H, Kihara M, Shiga K, Yamaguchi T, Kenmochi M, Kitajima H, Fukami M, Shimizu A, Kudoh J, Shibata S, Okano H, Miyake N, Matsumoto N, Hasegawa T. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016;48(7):792–7.

    Article  CAS  PubMed  Google Scholar 

  259. Roucher-Boulez F, Mallet-Motak D, Samara-Boustani D, Jilani H, Asmahane L, Souchon PF, Simon D, Nivot S, Heinrichs C, Ronze M, Bertagna X, Groisne L, Leheup B, Catherine NS, Blondin G, Lefevre C, Lemarchand L, Morel Y. NNT mutations: a cause of primary adrenal insufficiency, oxidative stress and extra-adrenal defects. Eur J Endocrinol. 2016;175(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  260. Toye AA, Lippiat JD, Proks P, Shimomura K, Bentley L, Hugill A, Mijat V, Goldsworthy M, Moir L, Haynes A, Quarterman J, Freeman HC, Ashcroft FM, Cox RD. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia. 2005;48:675–86.

    Article  CAS  PubMed  Google Scholar 

  261. Figueira TR. A word of caution concerning the use of Nnt-mutated C57BL/6 mice substrains as experimental models to study metabolism and mitochondrial pathophysiology. Exp Physiol. 2013;98:1643.

    Article  PubMed  Google Scholar 

  262. Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier M. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol. 2004;24:9414–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Kiermayer C, Northrup E, Schrewe A, Walch A, de Angelis MH, Schoensiegel F, Zischka H, Prehn C, Adamski J, Bekeredjian R, Ivandic B, Kupatt C, Brielmeier M. Heart-specific knockout of the Mitochondrial Thioredoxin Reductase (Txnrd2) induces metabolic and contractile dysfunction in the aging myocardium. J Am Heart Assoc. 2015;4

    Google Scholar 

  264. Sibbing D, Pfeufer A, Perisic T, Mannes AM, Fritz-Wolf K, Unwin S, Sinner MF, Gieger C, Gloeckner CJ, Wichmann HE, Kremmer E, Schafer Z, Walch A, Hinterseer M, Nabauer M, Kaab S, Kastrati A, Schomig A, Meitinger T, Bornkamm GW, Conrad M, von Beckerath N. Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy. Eur Heart J. 2011;32:1121–33.

    Article  CAS  PubMed  Google Scholar 

  265. Handschug K, Sperling S, Yoon SJ, Hennig S, Clark AJ, Huebner A. Triple a syndrome is caused by mutations in AAAS, a new WD-repeat protein gene. Hum Mol Genet. 2001;10:283–90.

    Article  CAS  PubMed  Google Scholar 

  266. Brioude F, Netchine I, Praz F, Le Jule M, Calmel C, Lacombe D, Edery P, Catala M, Odent S, Isidor B, Lyonnet S, Sigaudy S, Leheup B, Audebert-Bellanger S, Burglen L, Giuliano F, Alessandri JL, Cormier-Daire V, Laffargue F, Blesson S, Coupier I, Lespinasse J, Blanchet P, Boute O, Baumann C, Polak M, Doray B, Verloes A, Viot G, Le Bouc Y, Rossignol S. Mutations of the imprinted CDKN1C Gene as a cause of the overgrowth Beckwith-Wiedemann syndrome: clinical Spectrum and functional characterization. Hum Mutat. 2015;36:894–902.

    Article  CAS  PubMed  Google Scholar 

  267. Casey JP, Nobbs M, McGettigan P, Lynch S, Ennis S. Recessive mutations in MCM4/PRKDC cause a novel syndrome involving a primary immunodeficiency and a disorder of DNA repair. J Med Genet. 2012;49:242–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Karin Sanders, Sara Galac, and Audrey Odom John for the assistance with figure preparation. We thank Rebecca Cochran and Paul Hruz for reviewing the manuscript. This work was supported by the Sigrid Jusélius Foundation, the Academy of Finland, Department of Defense grants PC141008 and OC150105, Prostate Cancer Foundation, and the Paulo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Wilson M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pihlajoki, M., Heikinheimo, M., Wilson, D.B. (2018). Regulation of Adrenal Steroidogenesis. In: Levine, A. (eds) Adrenal Disorders. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-62470-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62470-9_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-62469-3

  • Online ISBN: 978-3-319-62470-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics