Skip to main content

Sliding Mode Control Design Procedure for Power Electronic Converters Used in Energy Conversion Systems

  • Chapter
  • First Online:
Book cover New Perspectives and Applications of Modern Control Theory

Abstract

Due to its order reduction property, good dynamic performance and low sensitivity to disturbances and plant parameter variations, sliding mode control (SMC) has been the method of choice for handling nonlinear systems with uncertain dynamics and disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Formally, conventional Singular Perturbation Theory is not applicable for differential equations with discontinuous right-hand side. But, if sliding mode appears, sliding mode equations are in compliance with the conditions of the theory.

References

  1. Bartolini, G., Fridman, L., Pisano, A., Usai, E.: Modern Sliding Mode Control Theory: New Perspectives and Applications. Lecture Notes in Control and Information Sciences, vol. 375 (2008)

    Google Scholar 

  2. Biel, D., Fossas, E.: Some experiments on chattering suppression in power converters. In: Control Applications, (CCA) & Intelligent Control, (ISIC), 2009 IEEE, pp. 1523–1528. IEEE (2009)

    Google Scholar 

  3. Blasko, V.: Analysis of a hybrid pwm based on modified space-vector and triangle-comparison methods. IEEE Trans. Ind. Appl. 33(3), 756–764 (1997)

    Article  Google Scholar 

  4. Bondarev, A., Bondarev, S., Kostyleva, N., Utkin, V.I.: Sliding modes in systems with asymptotic state observers. Avtomatika i Telemekhanika 6, 5–11 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Bowes, S.R., Clark, P.R.: Transputer-based harmonic-elimination pwm control of inverter drives. IEEE Trans. Ind. Appl. 28(1), 72–80 (1992)

    Article  Google Scholar 

  6. Bowes, S.R., Clark, P.R.: Regular-sampled harmonic-elimination pwm control of inverter drives. IEEE Trans. Power Electron. 10(5), 521–531 (1995)

    Article  Google Scholar 

  7. Chassaing, R.: DSP Applications Using C and the TMS320C6x DSK, vol. 13. Wiley, New York (2003)

    Google Scholar 

  8. Chen, L., Blaabjerg, F., Frederiksen, P.: An improved predictive control for three-phase pwm ac/dc converter with low sampling frequency. In: 20th International Conference on Industrial Electronics, Control and Instrumentation, 1994. IECON’94, vol. 1, pp. 399–404. IEEE (1994)

    Google Scholar 

  9. Cortes, D., Alvarez, J.: Robust sliding mode control for the boost converter. In: Power Electronics Congress, 2002. Technical Proceedings. CIEP 2002. VIII IEEE International, pp. 208–212. IEEE (2002)

    Google Scholar 

  10. DeCarlo, R.A., Zak, S.H., Matthews, G.P.: Variable structure control of nonlinear multivariable systems: a tutorial. Proc. IEEE 76(3), 212–232 (1988)

    Article  Google Scholar 

  11. Drakunov, S., Utkin, V., Zarei, S., Miller, J.: Sliding mode observers for automotive applications. In: Proceedings of the 1996 IEEE International Conference on Control Applications, 1996, pp. 344–346. IEEE (1996)

    Google Scholar 

  12. Drakunov, S.V., Izosimov, D., Lukyanov, A., Utkin, V., Utkin, V.: A hierarchical principle of the control systems decomposition based on motion separation. In: 9th IFAC Congress, vol. V, pp. 134–139 (1984)

    Google Scholar 

  13. Drakunov, S.V., Izosimov, D., Lukyanov, A., Utkin, V., Utkin, V.: Block control principle. ii. Autom. Remote Control 51(6), 737–746 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Emelyanov, S., Utkin, V., Taran, V., Kostyleva, N., Shubladze, A., Ezerov, V., et al.: Theory of Variable Structure Systems. Nauka, Moscow (1970)

    MATH  Google Scholar 

  15. Habetler, T.G.: A space vector-based rectifier regulator for ac/dc/ac converters. IEEE Trans. Power Electron. 8(1), 30–36 (1993)

    Article  Google Scholar 

  16. Hashimoto, H., Utkin, V., Xu, J.X., Suzuki, H., Harashima, F.: Vss observer for linear time varying system. In: Industrial Electronics Society, 1990. IECON’90, 16th Annual Conference of IEEE, pp. 34–39. IEEE (1990)

    Google Scholar 

  17. Holtz, J., Lotzkat, W., Khambadkone, A.M.: On continuous control of pwm inverters in the overmodulation range including the six-step mode. IEEE Trans. Power Electron. 8(4), 546–553 (1993)

    Article  Google Scholar 

  18. Kazmierkowski, M.P., Dzieniakowski, M.A., Sulkowski, W.: Novel space vector based current controllers for pwm-inverters. IEEE Trans. Power Electron. 6(1), 158–166 (1991)

    Article  Google Scholar 

  19. Kokotović, P.V.: Applications of singular perturbation techniques to control problems. SIAM Rev. 26(4), 501–550 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kokotovic, P.V., O’malley, R., Sannuti, P.: Singular perturbations and order reduction in control theoryan overview. Automatica 12(2), 123–132 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Komurcugil, H., Kukrer, O.: A novel current-control method for three-phase pwm ac/dc voltage-source converters. IEEE Trans. Ind. Electron. 46(3), 544–553 (1999)

    Article  Google Scholar 

  22. Krein, P.T.: Elements of Power Electronics, vol. 126. Oxford University Press, New York (1998)

    Google Scholar 

  23. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  24. Lee, H., Utkin, V.: Chattering analysis. Advances in Variable Structure and Sliding Mode Control. Lecture Notes in Control and Information Science, vol. 334, pp. 107–121. Springer, Berlin (2006)

    Chapter  Google Scholar 

  25. Lukyanov, A., Utkin, V.: Methods of reducing equations for dynamic-systems to a regular form. Autom. Remote Control 42(4), 413–420 (1981)

    MathSciNet  MATH  Google Scholar 

  26. Martinez-Salamero, L., Cid-Pastor, A., Giral, R., Calvente, J., Utkin, V.: Why is sliding mode control methodology needed for power converters? In: Power Electronics and Motion Control Conference (EPE/PEMC), 2010 14th International, pp. S9–25. IEEE (2010)

    Google Scholar 

  27. Miwa, B.A., Otten, D.M., Schlecht, M.: High efficiency power factor correction using interleaving techniques. In: Applied Power Electronics Conference and Exposition, 1992. APEC’92. Conference Proceedings 1992., Seventh Annual, pp. 557–568. IEEE (1992)

    Google Scholar 

  28. Mohan, N., Undeland, T.M.: Power Electronics: Converters, Applications, and Design. Wiley, New York (2007)

    Google Scholar 

  29. Nguyen, V.M., Lee, C.: Tracking control of buck converter using sliding-mode with adaptive hysteresis. In: Power Electronics Specialists Conference, 1995. PESC’95 Record., 26th Annual IEEE, vol. 2, pp. 1086–1093. IEEE (1995)

    Google Scholar 

  30. Ooi, B.T., Dixon, J.W., Kulkarni, A.B., Nishimoto, M.: An integrated ac drive system using a controlled-current pwm rectifier/inverter link. In: Power Electronics Specialists Conference, 1986 17th Annual IEEE, pp. 494–501. IEEE (1986)

    Google Scholar 

  31. Rashid Muhammad, H.: Power Electronics Handbook. Academic Press, San Diego (2001)

    Google Scholar 

  32. Sira-Ramirez, H.: Sliding-mode control on slow manifolds of dc-to-dc power converters. Int. J. Control 47(5), 1323–1340 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sira-Ramírez, H.: Sliding Mode Control: The Delta-Sigma Modulation Approach. Birkhäuser (2015)

    Google Scholar 

  34. Sira-Ramirez, H., Escobar, G., Ortega, R.: On passivity-based sliding mode control of switched dc-to-dc power converters. In: IEEE Conference on Decision and Control, vol. 3, pp. 2525–2526. Institute Of Electrical Engineers Inc (IEE) (1996)

    Google Scholar 

  35. Sira-Ramírez, H., Silva-Ortigoza, R.: Control Design Techniques in Power Electronics Devices. Springer Science & Business Media, London (2006)

    Google Scholar 

  36. Slotine, J.J.E.: Sliding controller design for non-linear systems. Int. J. Control 40(2), 421–434 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Trzynadlowski, A.M., Wang, Z., Nagashima, J.M., Stancu, C., Zelechowski, M.H.: Comparative investigation of pwm techniques for a new drive for electric vehicles. IEEE Trans. Ind. Appl. 39(5), 1396–1403 (2003)

    Article  Google Scholar 

  38. Utkin, V.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  39. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-mechanical Systems, vol. 34. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  40. Utkin, V.I.: Sliding Modes and Their Application in Variable Structure Systems. Mir publishers, Moscow (1978)

    MATH  Google Scholar 

  41. Utkin, V.I., Chen, D.S., Zarei, S., Miller, J.: Discrete time sliding mode observer for automotive alternator. In: Control Conference (ECC), 1997 European, pp. 3025–3030. IEEE (1997)

    Google Scholar 

  42. van Der Broeck, H.W., Skudelny, H.C., Stanke, G.V.: Analysis and realization of a pulsewidth modulator based on voltage space vectors. IEEE Trans. Ind. Appl. 24(1), 142–150 (1988)

    Article  Google Scholar 

  43. Venkataramanan, R., Sabanovic, A., Cuk, S.: Sliding mode control of dc-to-dc converters. In: Proceedings, IEEE Conference on Industrial Electronics, Control and Instrumentations (IECON), pp. 251–258 (1985)

    Google Scholar 

  44. Wong, C., Mohan, N., He, J.: Adaptive phase control for three phase pwm ac-to-dc converters with constant switching frequency. In: Conference Record of the Power Conversion Conference, 1993. Yokohama 1993, pp. 73–78. IEEE (1993)

    Google Scholar 

  45. Woo, W., Lee, N., Schuellein, G.: Multi-phase buck converter design with two-phase coupled inductors, applied power electronics conference and exposition, 2006. In: APEC, vol. 6, p. 6 (2006)

    Google Scholar 

  46. Wu, R., Dewan, S.B., Slemon, G.R.: A pwm ac-to-dc converter with fixed switching frequency. IEEE Trans. Ind. Appl. 26(5), 880–885 (1990)

    Article  Google Scholar 

  47. Wu, R., Dewan, S.B., Slemon, G.R.: Analysis of an ac-to-dc voltage source converter using pwm with phase and amplitude control. IEEE Trans. Ind. Appl. 27(2), 355–364 (1991)

    Article  Google Scholar 

  48. Xu, P., Wei, J., Lee, F.C.: Multiphase coupled-buck converter-a novel high efficient 12 v voltage regulator module. IEEE Trans. Power Electron. 18(1), 74–82 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazan M. Alsmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Alsmadi, Y.M., Utkin, V., Xu, L. (2018). Sliding Mode Control Design Procedure for Power Electronic Converters Used in Energy Conversion Systems. In: Clempner, J., Yu, W. (eds) New Perspectives and Applications of Modern Control Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-62464-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62464-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62463-1

  • Online ISBN: 978-3-319-62464-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics