Skip to main content

Algebraic Multigrid: From Academia to Industry

  • Chapter
  • First Online:
Scientific Computing and Algorithms in Industrial Simulations

Abstract

The research on multigrid in the 1970s opened revolutionary perspectives for the efficient solution of discretized elliptic partial differential equations. In spite of this, it took nearly three decades for it to be seriously recognized and used outside the research community. Surprisingly, not the original geometric multigrid (GMG) but algebraic multigrid (AMG) finally brought the breakthrough. When SCAI (Fraunhofer Institute for Algorithms and Scientific Computing)—formerly an institute of the German National Research Center of Information Technology (GMD)—became a Fraunhofer institute in 2001, applied research at SCAI necessarily got a very strong industrial focus. In particular, the primary goal of SCAI’s further AMG development was to help industrial software developers exploit the scientific progress in numerical solver research to their benefit.

In this report, we will review the development of AMG in general as well as the scientific and non-scientific efforts needed to develop SCAI’s software product SAMG (System Algebraic MultiGrid), today used as solver environment in many industrial simulation tools. The development of SAMG has mostly been driven by requests from industrial partners. We will outline some advanced industrial AMG applications, for instance, in semiconductor design, multi-ion transport and reaction applications, as well as oil reservoir simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since AMG by default does not exploit any information about underlying geometric grids, one should actually use the term multilevel rather than multigrid. Nevertheless, multigrid is still used for historical reasons.

  2. 2.

    Computational Dynamics Ltd. was one of the partners in the Europort project.

  3. 3.

    That is, the ratio of the total memory required for all matrices on all levels and the memory required to store the finest-level matrix.

  4. 4.

    To our knowledge, the SMS library is only used in Japan.

  5. 5.

    Which is a result of the requirement of over a 70% return on investment, most of it coming directly through cooperation with industry.

  6. 6.

    We assume the sorting of unknowns at points to be so that the first column of J ij corresponds to pressure derivatives.

References

  1. R.E. Alcouffe, A. Brandt, J.E. Dendy Jr., J.W. Painter, The multigrid method for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 2, 430–454 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. AMG Summit. http://grandmaster.colorado.edu/summit/. Accessed 31 Mar 2017

  3. K. Aziz, A. Settari, Petroleum Reservoir Simulation (Applied Science Publishers, London, 1979)

    Google Scholar 

  4. N.S. Bahvalov, Convergence of a relaxation method under natural constraints on an elliptic operator. Ž. Vyčisl. Mat. i Mat. Fiz. 6, 861–883 (1966)

    MathSciNet  Google Scholar 

  5. P. Bastian, K. Birken, K. Johannsen et al., UG – a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)

    Article  MATH  Google Scholar 

  6. R.P. Batycky, M.J. Blunt, M.R. Thiele, A 3d field-scale streamline-based reservoir simulator, SPE Reservoir Engineering (1997)

    Google Scholar 

  7. W.N. Bell, L.N. Olson, J.B. Schroder, PyAMG: Algebraic multigrid solvers in Python v3.0 (2015). Release 3.2

    Google Scholar 

  8. M. Blatt, P. Bastian, The iterative solver template library, in Applied Parallel Computing. State of the Art in Scientific Computing: 8th International Workshop, PARA 2006, Umeå, June 18–21, 2006. Revised Selected Papers, ed. by B. Kågström, E. Elmroth, J. Dongarra, J. Waśniewski (Springer, Berlin, Heidelberg, 2007), pp. 666–675

    Chapter  Google Scholar 

  9. A. Brandt, Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems, in Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics: Vol. I General Lectures. Fundamental Numerical Techniques, July 3–7, 1972, ed. by Universities of Paris VI and XI, H. Cabannes, R. Temam (Springer, Berlin, Heidelberg, 1973), pp. 82–89

    Google Scholar 

  10. A. Brandt, Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31, 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Brandt, Algebraic multigrid theory: the symmetric case. Appl. Math. Comput. 19, 23–56 (1986). Second Copper Mountain Conference on Multigrid Methods (Copper Mountain, CO, 1985)

    Google Scholar 

  12. A. Brandt, J. Brannick, K. Kahl, I. Livshits, Bootstrap AMG. SIAM J. Sci. Comput. 33, 612–632 (2011)

    Article  Google Scholar 

  13. A. Brandt, S. McCormick, J. Ruge, Algebraic multigrid (amg) for automatic multigrid solution with application to geodetic computations. Technical report, Institute for Computational Studies (1982)

    Google Scholar 

  14. A. Brandt, S. McCormick, J. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in Sparsity and Its Applications (Loughborough, 1983) (Cambridge University Press, Cambridge, 1985), pp. 257–284

    Google Scholar 

  15. M. Brezina, A. J. Cleary, R.D. Falgout et al., Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput. 22, 1570–1592 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Clees, AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation. Fraunhofer Series in Information and Communication Technology (Shaker Verlag, Aachen, 2005)

    Google Scholar 

  17. T. Clees, L. Ganzer, An efficient algebraic multigrid solver strategy for adaptive implicit methods in oil reservoir simulation. SPE J. 15 (2010)

    Google Scholar 

  18. T. Clees, K. Stüben, Algebraic multigrid for industrial semiconductor device simulation, in Challenges in Scientific Computing—CISC 2002. Lecture Notes in Computational Science and Engineering, vol. 35 (Springer, Berlin, 2003), pp. 110–130

    Google Scholar 

  19. T. Clees, T. Samrowski, M.L. Zitzmann, R. Weigel, An automatic multi-level solver switching strategy for PEEC-based EMC simulation, in 2007 18th International Zurich Symposium on Electromagnetic Compatibility (2007), pp. 25–28

    Google Scholar 

  20. K. Coats, A note on IMPES and some IMPES-based simulation models. SPE J. 5, 245–251 (2000)

    Article  Google Scholar 

  21. Copper Mountain Conferences. http://grandmaster.colorado.edu/~copper/. Accessed 31 Mar 2017

  22. P.M. de Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J. Comput. Appl. Math. 33, 1–27 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.E. Dendy Jr., Black box multigrid. J. Comput. Phys. 48, 366–386 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. J.E. Dendy Jr., S.F. McCormick, J.W. Ruge, T.F. Russell, S. Schaffer, Multigrid methods for three-dimensional petroleum reservoir simulation, in Proceedings of the 10th SPE Symposium on Reservoir Simulation (Society of Petroleum Engineers, Richardson, 1989)

    Google Scholar 

  25. R.D. Falgout, U.M. Yang, hypre: a library of high performance preconditioners, in Computational Science — ICCS 2002: International Conference, 2002 Proceedings, Part III, Amsterdam, April 21–24, ed. by P.M.A. Sloot, A.G. Hoekstra, C.J.K. Tan, J.J. Dongarra (Springer, Berlin, Heidelberg, 2002), pp. 632–641

    Chapter  Google Scholar 

  26. R.P. Fedorenko, On the speed of convergence of an iteration process. Ž. Vyčisl. Mat. i Mat. Fiz. 4, 559–564 (1964)

    MathSciNet  Google Scholar 

  27. T. Füllenbach, K. Stüben, Algebraic multigrid for selected PDE systems, in Elliptic and Parabolic Problems (Rolduc/Gaeta, 2001) (World Scientific Publishing, River Edge, NJ, 2002), pp. 399–410

    MATH  Google Scholar 

  28. T. Füllenbach, K. Stüben, S. Mijalkovic, Application of an algebraic multigrid solver to process simulation problems, in 2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502) (2000), pp. 225–228

    Google Scholar 

  29. S. Gries, System-AMG Approaches for Industrial Fully and Adaptive Implicit Oil Reservoir Simulations, PhD thesis, Universität zu Köln, 2016

    Google Scholar 

  30. S. Gries, K. Stüben, G.L. Brown, D. Chen, D.A. Collins, Preconditioning for efficiently applying algebraic multigrid in fully implicit reservoir simulations. SPE J. 19 (2014)

    Google Scholar 

  31. W. Hackbusch, Multi-Grid Methods and Applications. Springer Series in Computational Mathematics, vol. 4 (Springer, Berlin [u.a.], 1985)

    Google Scholar 

  32. P.W. Hemker, A note on defect correction processes with an approximate inverse of deficient rank. J. Comput. Appl. Math. 8, 137–139 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. M.A. Heroux, R.A. Bartlett, V.E. Howle et al., An overview of the Trilinos Project. ACM Trans. Math. Softw. 31, 397–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Klie, M. Wheeler, T. Clees, K. Stüben, Deflation AMG solvers for highly ill-conditioned reservoir simulation problems, in SPE Reservoir Simulation Symposium (Society of Petroleum Engineers, Richardson, 2007)

    Google Scholar 

  35. O.E. Livne, A. Brandt, Lean algebraic multigrid (LAMG): fast graph Laplacian linear solver. SIAM J. Sci. Comput. 34, B499–B522 (2012)

    Article  MATH  Google Scholar 

  36. B. Metsch, Algebraic Multigrid (AMG) for Saddle Point Systems. Dissertation, Institut für Numerische Simulation, Universität Bonn, July 2013

    Google Scholar 

  37. W.A. Mulder, A new multigrid approach to convection problems. J. Comput. Phys. 83, 303–323 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. N.H. Naik, J. Van Rosendale, The improved robustness of multigrid elliptic solvers based on multiple semicoarsened grids. SIAM J. Numer. Anal. 30, 215–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Napov, Y. Notay, An algebraic multigrid method with guaranteed convergence rate. SIAM J. Sci. Comput. 34, A1079–A1109 (2012)

    Article  MATH  Google Scholar 

  40. M. Naumov, M. Arsaev, P. Castonguay et al., AmgX: a library for GPU accelerated algebraic multigrid and preconditioned iterative methods. SIAM J. Sci. Comput. 37, S602–S626 (2015)

    Article  MATH  Google Scholar 

  41. Y. Notay, P.S. Vassilevski, Recursive Krylov-based multigrid cycles. Numer. Linear Algebra Appl. 15, 473–487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. H.-J. Plum, A. Krechel, S. Gries et al., Parallel algebraic multigrid, in Scientific Computing and Algorithms in Industrial Simulation — Projects and Products of Fraunhofer SCAI, ed. by M. Griebel, A. Schüller, M.A. Schweitzer (Springer, New York, 2017)

    Google Scholar 

  43. S. Reitzinger, Algebraic Multigrid Methods for Large Scale Finite Element Equations, PhD thesis, Johannes Keppler Universität Linz, 2001

    Google Scholar 

  44. J. Ruge, K. Stüben, Efficient solution of finite difference and finite element equations, in Multigrid Methods for Integral and Differential Equations (Bristol, 1983). Institute of Mathematics and Its Applications Conference Series, New Series, vol. 3 (Oxford University Press, New York, 1985), pp. 169–212

    Google Scholar 

  45. J.W. Ruge, K. Stüben, Algebraic multigrid, in Multigrid Methods. Frontiers Applied Mathematics, vol. 3 (SIAM, Philadelphia, PA, 1987), pp. 73–130

    Google Scholar 

  46. Y. Saad, H.A. van der Vorst, Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123, 1–33 (2000). Numerical analysis 2000, vol. III. Linear algebra

    Google Scholar 

  47. K. Stüben, Europort-D: commercial benefits of using parallel technology, in Parallel Computing: Fundamentals, Applications and New Directions, ed. by E. D’Hollander, F. Peters, G. Joubert, U. Trottenberg, R. Völpel. Advances in Parallel Computing, vol. 12 (North-Holland, Amsterdam, 1998), pp. 61–78

    Google Scholar 

  48. K. Stüben, A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309 (2001). Numerical analysis 2000, vol. VII, Partial differential equations

    Google Scholar 

  49. Super Matrix Solver SMS-AMG. http://www.vinas.com/en/seihin/sms/SMS_AMG_index.html. Accessed 31 Mar 2017

  50. M.R. Thiele, R.P. Batycky, M.J. Blunt, A Streamline-Based 3D Field-Scale Compositional Reservoir Simulator. SPE-38889-MS (Society of Petroleum Engineers, 1997)

    Google Scholar 

  51. P. Thum, Algebraic Multigrid for the Multi-Ion Transport and Reaction Model - A Physics-Aware Approach (Logos-Verlag, Berlin, 2012)

    MATH  Google Scholar 

  52. P. Thum, T. Clees, Towards physics-oriented smoothing in algebraic multigrid for systems of partial differential equations arising in multi-ion transport and reaction models. Numer. Linear Algebra Appl. 17, 253–271 (2010)

    MathSciNet  MATH  Google Scholar 

  53. P. Thum, T. Clees, G. Weyns, G. Nelissen, J. Deconinck, Efficient algebraic multigrid for migration–diffusion–convection–reaction systems arising in electrochemical simulations. J. Comput. Phys. 229, 7260–7276 (2010)

    Article  MATH  Google Scholar 

  54. U. Trottenberg, C.W. Oosterlee, A. Schüller, Multigrid (Academic, San Diego, CA, 2001). With contributions by A. Brandt, P. Oswald and K. Stüben

    Google Scholar 

  55. P. Vaněk, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. P. Vaněk, M. Brezina, J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math. 88, 559–579 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Wabro, Algebraic Multigrid Methods for the Numerical Solution of the Incompressible Navier-Stokes Equations, PhD thesis, Johannes Keppler Universität Linz, 2003

    Google Scholar 

  58. J.R. Wallis, Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration, in SPE Reservoir Simulation Symposium (Society of Petroleum Engineers, Richardson, 1983)

    Google Scholar 

  59. J.R. Wallis, R. Kendall, T. Little, J. Nolen, Constrained residual acceleration of conjugate gradient acceleration, in SPE Reservoir Simulation Symposium (Society of Petroleum Engineers, Richardson, 1985)

    Google Scholar 

  60. T. Washio, C.W. Oosterlee, Flexible multiple semicoarsening for three-dimensional singularly perturbed problems. SIAM J. Sci. Comput. 19, 1646–1666 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Stüben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stüben, K., Ruge, J.W., Clees, T., Gries, S. (2017). Algebraic Multigrid: From Academia to Industry. In: Griebel, M., Schüller, A., Schweitzer, M. (eds) Scientific Computing and Algorithms in Industrial Simulations. Springer, Cham. https://doi.org/10.1007/978-3-319-62458-7_5

Download citation

Publish with us

Policies and ethics