Nanoporous Nanocomposite Materials for Photocatalysis

  • Zahra HosseiniEmail author
  • Samad SabbaghiEmail author
  • Naghmeh Sadat Mirbagheri
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Aside from chemical modification, increasing the surface area of a photocatalyst material is a very important strategy to improve its photocatalytic activity. Although nanoparticles possess large surface area, problems arise from the aggregation of nanoparticles in solutions and difficulties related to the recycling of nanoparticles limit their practical applications. However, introduction of porosity into a photocatalyst structure not only provides a large surface area for adsorption of organic molecules and their subsequent photodegradation, but also improves the light harvesting by increasing the optical path length of the incident light inside the porous structure. The porous structure of a photocatalyst also provides a medium for better diffusion of reactants and products and can add selectivity to the properties of the photocatalyst material. Moreover, nanoporous photocatalyst materials can be easily recycled and reused which is very important in practical applications. In this chapter, the most common methods for the preparation of nanoporous nanocomposites for photocatalytic applications are presented. The parameters controlling the morphological characteristics of nanoporous structures together with the photocatalytic activity of these structures are discussed.


Nanoporous Nanocomposite Photocatalysis Synthesis 


  1. Alvaro M, Aprile C, Benitez M et al (2006) Photocatalytic activity of structured mesoporous TiO2 materials. J Phys Chem B 110:6661–6665CrossRefGoogle Scholar
  2. Anderson MW, Klinowski J (1986) Zeolites treated with silicon tetrachloride vapour IV. Acidity. Zeolites 6:455–466CrossRefGoogle Scholar
  3. Anpo M, Tekeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516CrossRefGoogle Scholar
  4. Anpo M, Zhang SG, Mishima H et al (1997) Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature. Catal Today 39:159–168CrossRefGoogle Scholar
  5. Antes I, Thiel W (1999) Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J Phys Chem A 103:9290–9295CrossRefGoogle Scholar
  6. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691CrossRefGoogle Scholar
  7. Berger S, Kunze J, Schmuki P et al (2010) Influence of Water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J Electrochem Soc 157:C18–C23CrossRefGoogle Scholar
  8. Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61CrossRefGoogle Scholar
  9. Boccaccini AR, Karapappas P, Marijuan JM, Kaya C (2004) TiO2 coatings on silicon carbide and carbon fibre substrates by electrophoretic deposition. J Mater Sci 39:851–859CrossRefGoogle Scholar
  10. Brinker JC, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585CrossRefGoogle Scholar
  11. Cai P, Ma D-K, Liu Q-C et al (2013) Conversion of ternary Zn2SnO4 octahedrons into binary mesoporous SnO2 and hollow SnS2 hierarchical octahedrons by template-mediated selective complex extraction. J Mater Chem A 1:5217–5223CrossRefGoogle Scholar
  12. Calleja G, Serrano DP, Sanz R, Pizarro P (2008) Mesostructured SiO2-doped TiO2 with enhanced thermal stability prepared by a soft-templating sol–gel route. Microporous Mesoporous Mater 111:429–440CrossRefGoogle Scholar
  13. Chae HJ, Nam I-S, Ham S-W, Hong SB (2004) Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NOx by NH3. Appl Catal B 53:117–126CrossRefGoogle Scholar
  14. Chaudhari NS, Bhirud AP, Sonawane RS et al (2011) Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst. Green Chem 13:2500–2506CrossRefGoogle Scholar
  15. Chen X, Wang X, Fu X (2009a) Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis. Energy Environ Sci 2:872–877CrossRefGoogle Scholar
  16. Chen Y, Ge H, Wei L et al (2013) Reduction degree of reduced graphene oxide (RGO) dependence of photocatalytic hydrogen evolution performance over RGO/ZnIn2S4 nanocomposites. Catal Sci Technol 3:1712–1717CrossRefGoogle Scholar
  17. Chen Z, Li D, Zhang W et al (2009b) Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. J Phys Chem C 113:4433–4440CrossRefGoogle Scholar
  18. Choi H, Antoniou MG, Pelaez M et al (2007) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 41:7530–7535CrossRefGoogle Scholar
  19. Choi SY, Lee B, Carew DB et al (2006) 3D hexagonal (R-3 m) mesostructured nanocrystalline titania thin films: synthesis and characterization. Adv Funct Mater 16:1731–1738CrossRefGoogle Scholar
  20. Crepaldi EL, Soler-Illia GJ de AA, Grosso D, et al (2003) Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J Am Chem Soc 125:9770–9786Google Scholar
  21. Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–702CrossRefGoogle Scholar
  22. Daiguji H, Hwang J, Takahashi A et al (2012) Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures. Langmuir 28:3671–3677CrossRefGoogle Scholar
  23. Dang X, Zhang X, Dong X et al (2014) The p–n heterojunction with porous BiVO4 framework and well-distributed Co3O4 as a super visible-light-driven photocatalyst. RSC Adv 4:54655–54661CrossRefGoogle Scholar
  24. Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968CrossRefGoogle Scholar
  25. Ding Z, Zhu HY, Lu GQ, Greenfield PF (1999) Photocatalytic properties of titania pillared clays by different drying methods. J Colloid Interface Sci 209:193–199CrossRefGoogle Scholar
  26. Dionigi C, Greco P, Ruani G et al (2008) 3D hierarchical porous TiO2 films from colloidal composite fluidic deposition. Chem Mater 20:7130–7135CrossRefGoogle Scholar
  27. Du J, Lai X, Yang N et al (2011a) Hierarchically ordered macro–mesoporous TiO2–graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5:590–596CrossRefGoogle Scholar
  28. Du J-J, Yuan Y-P, Sun J-X et al (2011b) New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J Hazard Mater 190:945–951CrossRefGoogle Scholar
  29. Dutta PK, Severance M (2011) Photoelectron transfer in zeolite cages and its relevance to solar energy conversion. J Phys Chem Lett 2:467–476CrossRefGoogle Scholar
  30. Ensie B, Samad S (2014) Removal of nitrate from drinking water using nano SiO2-FeOOH-Fe core-shell. Desalination 347:1–9CrossRefGoogle Scholar
  31. Fattakhova-Rohlfing D, Szeifert JM, Yu Q et al (2009) Low-temperature synthesis of mesoporous titania-silica films with pre-formed anatase nanocrystals. Chem Mater 21:2410–2417CrossRefGoogle Scholar
  32. Fischer A, Antonietti M, Thomas A (2007) Growth confined by the nitrogen source: synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv Mater 19:264–267CrossRefGoogle Scholar
  33. Fleisch T (1986) Hydrothermal dealumination of faujasites. J Catal 99:117–125CrossRefGoogle Scholar
  34. Fröschl T, Hörmann U, Kubiak P et al (2012) High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev 41:5313–5360CrossRefGoogle Scholar
  35. Fu Y, Jin Z, Xue W, Ge Z (2008) Ordered macro-mesoporous nc-TiO2 Films by sol-gel method using polystyrene array and triblock copolymer bitemplate. J Am Ceram Soc 91:2676–2682CrossRefGoogle Scholar
  36. Fu Y, Sun D, Chen Y et al (2012) An Amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chemie Int Ed 51:3364–3367CrossRefGoogle Scholar
  37. Fukasawa Y, Takanabe K, Shimojima A et al (2011) Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template. Chem—Asian J 6:103–109CrossRefGoogle Scholar
  38. Gao J, Miao J, Li P-Z et al (2014) A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chem Commun 50:3786–3788CrossRefGoogle Scholar
  39. Gascon J, Hernández-Alonso MD, Almeida AR et al (2008) Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. Chemsuschem 1:981–983CrossRefGoogle Scholar
  40. Geng W, Liu H, Yao X (2013) Enhanced photocatalytic properties of titania–graphene nanocomposites: a density functional theory study. Phys Chem Chem Phys 15:6025–6033CrossRefGoogle Scholar
  41. Getman RB, Bae Y-S, Wilmer CE, Snurr RQ (2012) Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem Rev 112:703–723CrossRefGoogle Scholar
  42. Gomes Silva C, Luz I, Llabrés i Xamena FX, et al (2010) Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem—A Eur J 16:11133–11138Google Scholar
  43. Gou X, Cheng F, Shi Y et al (2006) Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S, Se)2 nano-/microstructures via facile solution route. J Am Chem Soc 128:7222–7229CrossRefGoogle Scholar
  44. Grosso D, de A. A. Soler-Illia GJ, Babonneau F, et al (2001) Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels. Adv Mater 13:1085–1090Google Scholar
  45. Hodgson SD, Brooks WSM, Clayton AJ et al (2013) Enhancing blue photoresponse in CdTe photovoltaics by luminescent down-shifting using semiconductor quantum dot/PMMA films. Nano Energy 2:21–27CrossRefGoogle Scholar
  46. Hong J, Chen C, Bedoya FE et al (2016) Carbon nitride nanosheet/metal–organic framework nanocomposites with synergistic photocatalytic activities. Catal Sci Technol 6:5042–5051CrossRefGoogle Scholar
  47. Horcajada P, Serre C, Maurin G et al (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780CrossRefGoogle Scholar
  48. Horiuchi Y, Toyao T, Saito M et al (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework. J Phys Chem C 116:20848–20853CrossRefGoogle Scholar
  49. Hosseini Z, Taghavinia N, Sharifi N et al (2008) Fabrication of high conductivity TiO2/Ag fibrous electrode by the electrophoretic deposition method. J Phys Chem C 112:18686–18689CrossRefGoogle Scholar
  50. Hou Y, Li X, Zou X et al (2009) Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. Environ Sci Technol 43:858–863CrossRefGoogle Scholar
  51. Hu P, Pramana SS, Cao S et al (2013) Ion-induced synthesis of uniform single-crystalline sulphide-based quaternary-alloy hexagonal nanorings for highly efficient photocatalytic hydrogen evolution. Adv Mater 25:2567–2572CrossRefGoogle Scholar
  52. Hu Z, Deibert BJ, Li J (2014) Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43:5815–5840CrossRefGoogle Scholar
  53. Huang X-C, Lin Y-Y, Zhang J-P, Chen X-M (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chemie Int Ed 45:1557–1559CrossRefGoogle Scholar
  54. Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A Mater Sci Process 70:365–376CrossRefGoogle Scholar
  55. Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catal Lett 80:111–114CrossRefGoogle Scholar
  56. Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355CrossRefGoogle Scholar
  57. Inumaru K, Kasahara T, Yasui M, Yamanaka S (2005) Direct nanocomposite of crystalline TiO2 particles and mesoporous silica as a molecular selective and highly active photocatalyst. Chem Commun 30:2131–2133CrossRefGoogle Scholar
  58. Iwakuni H, Shinmyou Y, Yano H et al (2007) Direct decomposition of NO into N2 and O2 on BaMnO3-based perovskite oxides. Appl Catal B 74:299–306CrossRefGoogle Scholar
  59. Jing W, Huang W, Xing W et al (2009) Fabrication of supported mesoporous tio2 membranes: matching the assembled and interparticle pores for an improved ultrafiltration performance. ACS Appl Mater Interfaces 1:1607–1612CrossRefGoogle Scholar
  60. Jones CW, Hwang S-J, Okubo T, Davis ME (2001) Synthesis of hydrophobic molecular sieves by hydrothermal treatment with acetic acid. Chem Mater 13:1041–1050CrossRefGoogle Scholar
  61. Kale BB, Baeg J-O, Lee SM et al (2006) CdIn2S4 nanotubes and “Marigold” nanostructures: a visible-light photocatalyst. Adv Funct Mater 16:1349–1354CrossRefGoogle Scholar
  62. Kaune G, Memesa M, Meier R et al (2009) Hierarchically structured titania films prepared by polymer/colloidal templating. ACS Appl Mater Interfaces 1:2862–2869CrossRefGoogle Scholar
  63. Kaya C, Boccaccini AR (2001) Colloidal processing of complex shape stainless steel woven fiber mat reinforced alumina ceramic matrix composites using electrophoretic deposition. J Mater Sci Lett 20:1465–1467CrossRefGoogle Scholar
  64. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5). J Am Chem Soc 129:14176–14177CrossRefGoogle Scholar
  65. Ke F, Wang L, Zhu J (2015) Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res 8:1834–1846CrossRefGoogle Scholar
  66. Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100:411–419CrossRefGoogle Scholar
  67. Kimura T, Miyamoto N, Meng X et al (2009) Rapid fabrication of mesoporous titania films with controlled macroporosity to improve photocatalytic property. Chem—Asian J 4:1486–1493CrossRefGoogle Scholar
  68. Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Recent developments in titanium oxide-based photocatalysts. Appl Catal A 325:1–14CrossRefGoogle Scholar
  69. Kluson P, Kacer P, Cajthaml T, Kalaji M (2001) Preparation of titania mesoporous materials using a surfactant-mediated sol–gel method. J Mater Chem 11:644–651CrossRefGoogle Scholar
  70. Kontos AI, Likodimos V, Stergiopoulos T et al (2009) Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem Mater 21:662–672CrossRefGoogle Scholar
  71. Kornarakis I, Lykakis IN, Vordos N, Armatas GS (2014) Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors. Nanoscale 6:8694–8703CrossRefGoogle Scholar
  72. Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125CrossRefGoogle Scholar
  73. Kuang D, Brillet J, Chen P et al (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2:1113–1116CrossRefGoogle Scholar
  74. Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614CrossRefGoogle Scholar
  75. Kuwahara Y, Yamashita H (2011) Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials. J Mater Chem 21:2407–2416CrossRefGoogle Scholar
  76. Laurier KGM, Vermoortele F, Ameloot R et al (2013) Iron(III)-based metal-organic frameworks as visible light photocatalysts. J Am Chem Soc 135:14488–14491CrossRefGoogle Scholar
  77. Lee J, Farha OK, Roberts J et al (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459CrossRefGoogle Scholar
  78. Lei Z, You W, Liu M, et al (2003) Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem Commun 2142–2143Google Scholar
  79. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219CrossRefGoogle Scholar
  80. Li D, Chang P-C, Chien C-J, Lu JG (2010) Applications of tunable TiO2 nanotubes as nanotemplate and photovoltaic device. Chem Mater 22:5707–5711CrossRefGoogle Scholar
  81. Li D, Chien C-J, Deora S et al (2011) Prototype of a scalable core–shell Cu2O/TiO2 solar cell. Chem Phys Lett 501:446–450CrossRefGoogle Scholar
  82. Li G (1999) Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sens Actuators, B 60:64–70CrossRefGoogle Scholar
  83. Li J, Zeng HC (2007) Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. J Am Chem Soc 129:15839–15847CrossRefGoogle Scholar
  84. Li L, Peng S, Wang N et al (2015) A general strategy toward carbon cloth-based hierarchical films constructed by porous nanosheets for superior photocatalytic activity. Small 11:2429–2436CrossRefGoogle Scholar
  85. Linsebigler AL, Linsebigler AL, Yates JT Jr et al (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  86. Llabrés i Xamena FX, Corma A, Garcia H (2007) Applications for metal–organic frameworks (MOFs) as quantum dot semiconductors. J Phys Chem C 111:80–85Google Scholar
  87. Lonyi F, Lunsford J (1992) The development of strong acidity in hexafluorosilicate-modified Y-type zeolites. J Catal 136:566–577CrossRefGoogle Scholar
  88. López-Muñoz M-J, van Grieken R, Aguado J, Marugán J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: Structure of the TiO2/SBA-15 photocatalysts. Catal Today 101:307–314CrossRefGoogle Scholar
  89. Lu F, Cai W, Zhang Y (2008) ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv Funct Mater 18:1047–1056CrossRefGoogle Scholar
  90. Lu G, Hupp JT (2010) Metal–organic frameworks as sensors: a ZIF-8 based Fabry–Pérot Device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833CrossRefGoogle Scholar
  91. Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal–organic frameworks. Chem Soc Rev 38:1248–1256CrossRefGoogle Scholar
  92. Macak JM, Gong BG, Hueppe M, Schmuki P (2007a) Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv Mater 19:3027–3031CrossRefGoogle Scholar
  93. Macak JM, Zlamal M, Krysa J, Schmuki P (2007b) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304CrossRefGoogle Scholar
  94. Malfatti L, Falcaro P, Pinna A et al (2014) Exfoliated graphene into highly ordered mesoporous titania films: highly performing nanocomposites from integrated processing. ACS Appl Mater Interfaces 6:795–802CrossRefGoogle Scholar
  95. Marien CBD, Cottineau T, Robert D, Drogui P (2016) TiO2 nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat. Appl Catal B 194:1–6CrossRefGoogle Scholar
  96. Martins PM, Miranda R, Marques J et al (2016) Comparative efficiency of TiO2 nanoparticles in suspension vs. immobilization into P(VDF–TrFE) porous membranes. RSC Adv 6:12708–12716CrossRefGoogle Scholar
  97. Meng X, Kimura T, Ohji T, Kato K (2009) Triblock copolymer templated semi-crystalline mesoporous titania films containing emulsion-induced macropores. J Mater Chem 19:1894–1900CrossRefGoogle Scholar
  98. Millward AR, Yaghi OM (2005) Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRefGoogle Scholar
  99. Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218CrossRefGoogle Scholar
  100. Ng YH, Lightcap IV, Goodwin K et al (2010) To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J Phys Chem Lett 1:2222–2227CrossRefGoogle Scholar
  101. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  102. Ogawa M, Ikeue K, Anpo M (2001) Transparent self-standing films of titanium-containing nanoporous silica. Chem Mater 13:2900–2904CrossRefGoogle Scholar
  103. Online VA, Zhang C, Qiu L et al (2013) A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J Mater Chem A 100:14329–14334Google Scholar
  104. Ooka C, Yoshida H, Horio M et al (2003) Adsorptive and photocatalytic performance of TiO2 pillared montmorillonite in degradation of endocrine disruptors having different hydrophobicity. Appl Catal B 41:313–321CrossRefGoogle Scholar
  105. Pan JH, Dou H, Xiong Z et al (2010) Porous photocatalysts for advanced water purifications. J Mater Chem 20:4512–4528CrossRefGoogle Scholar
  106. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349CrossRefGoogle Scholar
  107. Peng S, Wu Y, Zhu P et al (2011) Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films. J Mater Chem 21:15718–15726CrossRefGoogle Scholar
  108. Petit C, Bandosz TJ (2011) Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))-graphite oxide composites: exploring the limits of materials fabrication. Adv Funct Mater 21:2108–2117CrossRefGoogle Scholar
  109. Petit C, Bandosz TJ (2009a) MOF-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753–4757CrossRefGoogle Scholar
  110. Petit C, Bandosz TJ (2009b) MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. J Mater Chem 19:6521–6528CrossRefGoogle Scholar
  111. Petit C, Bandosz TJ (2010) Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: analysis of surface interactions. Adv Funct Mater 20:111–118CrossRefGoogle Scholar
  112. Petit C, Levasseur B, Mendoza B, Bandosz TJ (2012) Reactive adsorption of acidic gases on MOF/graphite oxide composites. Microporous Mesoporous Mater 154:107–112CrossRefGoogle Scholar
  113. Phan A, Doonan CJ, Uribe-Romo FJ et al (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67CrossRefGoogle Scholar
  114. Reddy EP, Sun B, Smirniotis PG (2004) Transition metal modified TiO2-loaded MCM-41 catalysts for visible- and UV-Light driven photodegradation of aqueous organic pollutants. J Phys Chem B 108:17198–17205CrossRefGoogle Scholar
  115. Rengaraj S, Venkataraj S, Tai C et al (2011) Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. Langmuir 27:5534–5541CrossRefGoogle Scholar
  116. Rolison DR (2003) Catalytic Nanoarchitectures–the importance of nothing and the unimportance of periodicity. Science (80-) 299:1698–1701Google Scholar
  117. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chemie—Int Ed 50:2904–2939CrossRefGoogle Scholar
  118. Sabbaghi S, Mohammadi M, Ebadi H (2016) Photocatalytic degradation of benzene wastewater using PANI-TiO2 nanocomposite under UV and solar light radiation. J Environ Eng 142:05015003–1–05015003–7CrossRefGoogle Scholar
  119. Sakamoto JS, Dunn B (2002) Hierarchical battery electrodes based on inverted opal structures. J Mater Chem 12:2859–2861CrossRefGoogle Scholar
  120. Scotti R, D’Arienzo M, Morazzoni F, Bellobono IR (2009) Immobilization of hydrothermally produced TiO2 with different phase composition for photocatalytic degradation of phenol. Appl Catal B Environ 88:323–330CrossRefGoogle Scholar
  121. Shchukin DG, Caruso RA (2004) Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration. Chem Mater 16:2287–2292CrossRefGoogle Scholar
  122. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  123. Stach H, Lohse U, Thamm H, Schirmer W (1986) Adsorption equilibria of hydrocarbons on highly dealuminated zeolites. Zeolites 6:74–90CrossRefGoogle Scholar
  124. Sterte J (1986) Synthesis and properties of titanium oxide cross-linked montmorillonite. Clays Clay Miner 34:658–664CrossRefGoogle Scholar
  125. Strandwitz NC, Nonoguchi Y, Boettcher SW, Stucky GD (2010) In situ photopolymerization of pyrrole in mesoporous TiO2. Langmuir 26:5319–5322CrossRefGoogle Scholar
  126. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89:1771–1789CrossRefGoogle Scholar
  127. Sun D, Fu Y, Liu W et al (2013) Studies on photocatalytic CO2 reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chem—A Eur J 19:14279–14285CrossRefGoogle Scholar
  128. Sun M, Zangari G, Shamsuzzoha M, Metzger RM (2001) Electrodeposition of highly uniform magnetic nanoparticle arrays in ordered alumite. Appl Phys Lett 78:2964–2966CrossRefGoogle Scholar
  129. Tang J, Wu Y, McFarland EW, Stucky GD (2004) Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films. Chem Commun 1670–1671Google Scholar
  130. Tian Y-Q, Zhao Y-M, Chen Z-X et al (2007) Design and Generation of extended zeolitic metal-organic frameworks (ZMOFs): synthesis and crystal structures of zinc(II) imidazolate polymers with zeolitic topologies. Chem—A Eur J 13:4146–4154CrossRefGoogle Scholar
  131. Treacy MMJ, Higgins JB (2007) Powder pattern identification table. In: Collection of simulated XRD powder patterns for zeolites. Elsevier, pp 10–16Google Scholar
  132. Tsui L-k, Wu L, Swami N, Zangari G (2012) Photoelectrochemical performance of electrodeposited Cu2O on TiO2 nanotubes. ECS Electrochem Lett 1:D15–D19Google Scholar
  133. Tsui L, Zangari G (2013a) The influence of morphology of electrodeposited Cu2O and Fe2O3 on the conversion efficiency of TiO2 nanotube photoelectrochemical solar cells. Electrochim Acta 100:220–225CrossRefGoogle Scholar
  134. Tsui LK, Zangari G (2013b) Modification of TiO2 nanotubes by Cu2O for photoelectrochemical, photocatalytic, and photovoltaic devices. Electrochim Acta 128:341–348CrossRefGoogle Scholar
  135. Tu W, Zhou Y, Liu Q et al (2012) Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv Funct Mater 22:1215–1221CrossRefGoogle Scholar
  136. van Grieken R, Aguado J, López-Muñoz MJ, Marugán J (2002) Synthesis of size-controlled silica-supported TiO2 photocatalysts. J Photochem Photobiol, A 148:315–322CrossRefGoogle Scholar
  137. Wang C, Xie Z, DeKrafft KE, Lin W (2011) Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454CrossRefGoogle Scholar
  138. Wang CC, Li JR, Lv XL et al (2014a) Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ Sci 7:2831–2867CrossRefGoogle Scholar
  139. Wang D, Choi D, Yang Z et al (2008a) Synthesis and Li-Ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem Mater 20:3435–3442CrossRefGoogle Scholar
  140. Wang D, Huang R, Liu W et al (2014b) Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal 4:4254–4260CrossRefGoogle Scholar
  141. Wang H, Hu Y, Jiang Y et al (2013a) Facile synthesis and excellent recyclable photocatalytic activity of pine cone-like Fe3O4@Cu2O/Cu porous nanocomposites. Dalt Trans 42:4915–4921CrossRefGoogle Scholar
  142. Wang H, Yuan X, Wu Y et al (2015a) Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl Catal B 174–175:445–454CrossRefGoogle Scholar
  143. Wang J-L, Wang C, Lin W (2012) Metal-organic frameworks for light harvesting and photocatalysis. ACS Catal 2:2630–2640CrossRefGoogle Scholar
  144. Wang R, Gu L, Zhou J, et al (2015b) Quasi-polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. Adv Mater Interfaces 2:1500037(1–5)Google Scholar
  145. Wang W, Ng TW, Ho WK et al (2013b) CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms. Appl Catal B 129:482–490CrossRefGoogle Scholar
  146. Wang X, Mitchell DRG, Prince K et al (2008b) Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications. Chem Mater 20:3917–3926CrossRefGoogle Scholar
  147. Wang X, Yu JC, Ho C et al (2005) Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir 21:2552–2559CrossRefGoogle Scholar
  148. Wei W, Yu C, Zhao Q et al (2013) Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures. Chem—A Eur J 19:566–577CrossRefGoogle Scholar
  149. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239CrossRefGoogle Scholar
  150. Xiong C, Balkus KJ (2005) Fabrication of TiO2 nanofibers from a mesoporous silica film. Chem Mater 17:5136–5140CrossRefGoogle Scholar
  151. Xiong L, Huang S, Yang X et al (2011) p-Type and n-type Cu2O semiconductor thin films: controllable preparation by simple solvothermal method and photoelectrochemical properties. Electrochim Acta 56:2735–2739CrossRefGoogle Scholar
  152. Xu B, He P, Liu H et al (2014a) A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew Chemie Int Ed 53:2339–2343CrossRefGoogle Scholar
  153. Xu W-T, Ma L, Ke F et al (2014b) Metal–organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalt Trans 43:3792–3798CrossRefGoogle Scholar
  154. Xu Y, Langford CH (1995) Enhanced photoactivity of a titanium(IV) oxide supported on ZSM5 and zeolite a at low coverage. J Phys Chem 99:11501–11507CrossRefGoogle Scholar
  155. Xu Y, Lv M, Yang H et al (2015) BiVO4/MIL-101 composites having the synergistically enhanced visible light photocatalytic activity. RSC Adv 5:43473–43479Google Scholar
  156. Xuzhuang Y, Yang D, Huaiyong Z et al (2009) Mesoporous structure with size controllable anatase attached on silicate layers for efficient photocatalysis. J Phys Chem C 113:8243–8248CrossRefGoogle Scholar
  157. Yamanaka S, Nishihara T, Hattori M, Suzuki Y (1987) Preparation and properties of titania pillared clay. Mater Chem Phys 17:87–101CrossRefGoogle Scholar
  158. Yang H, He X-W, Wang F et al (2012) Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J Mater Chem 22:21849–21851CrossRefGoogle Scholar
  159. Yang P (1998) Hierarchically ordered oxides. Science 282:2244–2246CrossRefGoogle Scholar
  160. Yoneyama H, Haga S, Yamanaka S (1989) Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay. J Phys Chem 93:4833–4837CrossRefGoogle Scholar
  161. Yoshitake H, Sugihara T, Tatsumi T (2002) Preparation of wormhole-like mesoporous tio2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chem Mater 14:1023–1029CrossRefGoogle Scholar
  162. Yu J, Su Y, Cheng B (2007) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv Funct Mater 17:1984–1990CrossRefGoogle Scholar
  163. Yuan P, Yin X, He H et al (2006) Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by TiCl4 hydrolysis method. Microporous Mesoporous Mater 93:240–247CrossRefGoogle Scholar
  164. Yue W, Xu X, Irvine JTS et al (2009) Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chem Mater 21:2540–2546CrossRefGoogle Scholar
  165. Zhang F, Shi J, Jin Y et al (2015) Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem Eng J 259:183–190CrossRefGoogle Scholar
  166. Zhang J, Minagawa M, Matsuoka M et al (2000) Photocatalytic decomposition of NO on Ti-HMS mesoporous zeolite catalysts. Catal Letters 66:241–243CrossRefGoogle Scholar
  167. Zhang L, Yu JC (2003) A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity. Chem Commun 2078–2079Google Scholar
  168. Zhang SG, Fujii Y, Yamashita H et al (1997) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. Chem Lett 26:659–660CrossRefGoogle Scholar
  169. Zhang X, Zhang F, Chan K-Y (2005) Synthesis of titania–silica mixed oxide mesoporous materials, characterization and photocatalytic properties. Appl Catal A 284:193–198CrossRefGoogle Scholar
  170. Zhao D, Peng T, Lu L et al (2008) Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. J Phys Chem C 112:8486–8494CrossRefGoogle Scholar
  171. Zhou B, Wang H, Liu Z et al (2011) Enhanced photocatalytic activity of flowerlike Cu2O/Cu prepared using solvent-thermal route. Mater Chem Phys 126:847–852CrossRefGoogle Scholar
  172. Zhou H-C Joe, Kitagawa S (2014) Metal–Organic Frameworks (MOFs). Chem Soc Rev 43:5415–5418Google Scholar
  173. Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674CrossRefGoogle Scholar
  174. Zhou J, Tian G, Chen Y et al (2013a) In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance. Chem Commun 49:2237–2239CrossRefGoogle Scholar
  175. Zhou J-J, Wang R, Liu X-L et al (2015) In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation. Appl Surf Sci 346:278–283CrossRefGoogle Scholar
  176. Zhou T, Du Y, Borgna A et al (2013b) Post-synthesis modification of a metal–organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ Sci 6:3229–3234CrossRefGoogle Scholar
  177. Zhou W, Fu H (2013) Mesoporous TiO2: preparation, doping, and as a composite for photocatalysis. ChemCatChem 5:885–894CrossRefGoogle Scholar
  178. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74CrossRefGoogle Scholar
  179. Zimny K, Roques-Carmes T, Carteret C et al (2012) Synthesis and photoactivity of ordered mesoporous titania with a semicrystalline framework. J Phys Chem C 116:6585–6594CrossRefGoogle Scholar
  180. Zwilling V, Aucouturier M, Darque-Ceretti E (1999a) Anodic oxidation of titanium and TA6 V alloy in chromic media. an electrochemical approach. Electrochim Acta 45:921–929CrossRefGoogle Scholar
  181. Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999b) Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf Interface Anal 27:629–637CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Advanced TechnologiesShiraz UniversityShirazIran

Personalised recommendations