Skip to main content

Nanoporous Nanocomposite Materials for Photocatalysis

  • Chapter
  • First Online:
  • 2160 Accesses

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Aside from chemical modification, increasing the surface area of a photocatalyst material is a very important strategy to improve its photocatalytic activity. Although nanoparticles possess large surface area, problems arise from the aggregation of nanoparticles in solutions and difficulties related to the recycling of nanoparticles limit their practical applications. However, introduction of porosity into a photocatalyst structure not only provides a large surface area for adsorption of organic molecules and their subsequent photodegradation, but also improves the light harvesting by increasing the optical path length of the incident light inside the porous structure. The porous structure of a photocatalyst also provides a medium for better diffusion of reactants and products and can add selectivity to the properties of the photocatalyst material. Moreover, nanoporous photocatalyst materials can be easily recycled and reused which is very important in practical applications. In this chapter, the most common methods for the preparation of nanoporous nanocomposites for photocatalytic applications are presented. The parameters controlling the morphological characteristics of nanoporous structures together with the photocatalytic activity of these structures are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvaro M, Aprile C, Benitez M et al (2006) Photocatalytic activity of structured mesoporous TiO2 materials. J Phys Chem B 110:6661–6665

    Article  CAS  Google Scholar 

  • Anderson MW, Klinowski J (1986) Zeolites treated with silicon tetrachloride vapour IV. Acidity. Zeolites 6:455–466

    Article  CAS  Google Scholar 

  • Anpo M, Tekeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516

    Article  CAS  Google Scholar 

  • Anpo M, Zhang SG, Mishima H et al (1997) Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature. Catal Today 39:159–168

    Article  CAS  Google Scholar 

  • Antes I, Thiel W (1999) Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J Phys Chem A 103:9290–9295

    Article  CAS  Google Scholar 

  • Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    Article  CAS  Google Scholar 

  • Berger S, Kunze J, Schmuki P et al (2010) Influence of Water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J Electrochem Soc 157:C18–C23

    Article  CAS  Google Scholar 

  • Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61

    Article  CAS  Google Scholar 

  • Boccaccini AR, Karapappas P, Marijuan JM, Kaya C (2004) TiO2 coatings on silicon carbide and carbon fibre substrates by electrophoretic deposition. J Mater Sci 39:851–859

    Article  CAS  Google Scholar 

  • Brinker JC, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585

    Article  CAS  Google Scholar 

  • Cai P, Ma D-K, Liu Q-C et al (2013) Conversion of ternary Zn2SnO4 octahedrons into binary mesoporous SnO2 and hollow SnS2 hierarchical octahedrons by template-mediated selective complex extraction. J Mater Chem A 1:5217–5223

    Article  CAS  Google Scholar 

  • Calleja G, Serrano DP, Sanz R, Pizarro P (2008) Mesostructured SiO2-doped TiO2 with enhanced thermal stability prepared by a soft-templating sol–gel route. Microporous Mesoporous Mater 111:429–440

    Article  CAS  Google Scholar 

  • Chae HJ, Nam I-S, Ham S-W, Hong SB (2004) Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NOx by NH3. Appl Catal B 53:117–126

    Article  CAS  Google Scholar 

  • Chaudhari NS, Bhirud AP, Sonawane RS et al (2011) Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst. Green Chem 13:2500–2506

    Article  CAS  Google Scholar 

  • Chen X, Wang X, Fu X (2009a) Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis. Energy Environ Sci 2:872–877

    Article  CAS  Google Scholar 

  • Chen Y, Ge H, Wei L et al (2013) Reduction degree of reduced graphene oxide (RGO) dependence of photocatalytic hydrogen evolution performance over RGO/ZnIn2S4 nanocomposites. Catal Sci Technol 3:1712–1717

    Article  CAS  Google Scholar 

  • Chen Z, Li D, Zhang W et al (2009b) Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. J Phys Chem C 113:4433–4440

    Article  CAS  Google Scholar 

  • Choi H, Antoniou MG, Pelaez M et al (2007) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 41:7530–7535

    Article  CAS  Google Scholar 

  • Choi SY, Lee B, Carew DB et al (2006) 3D hexagonal (R-3 m) mesostructured nanocrystalline titania thin films: synthesis and characterization. Adv Funct Mater 16:1731–1738

    Article  CAS  Google Scholar 

  • Crepaldi EL, Soler-Illia GJ de AA, Grosso D, et al (2003) Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J Am Chem Soc 125:9770–9786

    Google Scholar 

  • Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–702

    Article  CAS  Google Scholar 

  • Daiguji H, Hwang J, Takahashi A et al (2012) Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures. Langmuir 28:3671–3677

    Article  CAS  Google Scholar 

  • Dang X, Zhang X, Dong X et al (2014) The p–n heterojunction with porous BiVO4 framework and well-distributed Co3O4 as a super visible-light-driven photocatalyst. RSC Adv 4:54655–54661

    Article  CAS  Google Scholar 

  • Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968

    Article  CAS  Google Scholar 

  • Ding Z, Zhu HY, Lu GQ, Greenfield PF (1999) Photocatalytic properties of titania pillared clays by different drying methods. J Colloid Interface Sci 209:193–199

    Article  CAS  Google Scholar 

  • Dionigi C, Greco P, Ruani G et al (2008) 3D hierarchical porous TiO2 films from colloidal composite fluidic deposition. Chem Mater 20:7130–7135

    Article  CAS  Google Scholar 

  • Du J, Lai X, Yang N et al (2011a) Hierarchically ordered macro–mesoporous TiO2–graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5:590–596

    Article  CAS  Google Scholar 

  • Du J-J, Yuan Y-P, Sun J-X et al (2011b) New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J Hazard Mater 190:945–951

    Article  CAS  Google Scholar 

  • Dutta PK, Severance M (2011) Photoelectron transfer in zeolite cages and its relevance to solar energy conversion. J Phys Chem Lett 2:467–476

    Article  CAS  Google Scholar 

  • Ensie B, Samad S (2014) Removal of nitrate from drinking water using nano SiO2-FeOOH-Fe core-shell. Desalination 347:1–9

    Article  CAS  Google Scholar 

  • Fattakhova-Rohlfing D, Szeifert JM, Yu Q et al (2009) Low-temperature synthesis of mesoporous titania-silica films with pre-formed anatase nanocrystals. Chem Mater 21:2410–2417

    Article  CAS  Google Scholar 

  • Fischer A, Antonietti M, Thomas A (2007) Growth confined by the nitrogen source: synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv Mater 19:264–267

    Article  CAS  Google Scholar 

  • Fleisch T (1986) Hydrothermal dealumination of faujasites. J Catal 99:117–125

    Article  CAS  Google Scholar 

  • Fröschl T, Hörmann U, Kubiak P et al (2012) High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev 41:5313–5360

    Article  CAS  Google Scholar 

  • Fu Y, Jin Z, Xue W, Ge Z (2008) Ordered macro-mesoporous nc-TiO2 Films by sol-gel method using polystyrene array and triblock copolymer bitemplate. J Am Ceram Soc 91:2676–2682

    Article  CAS  Google Scholar 

  • Fu Y, Sun D, Chen Y et al (2012) An Amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chemie Int Ed 51:3364–3367

    Article  CAS  Google Scholar 

  • Fukasawa Y, Takanabe K, Shimojima A et al (2011) Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template. Chem—Asian J 6:103–109

    Article  CAS  Google Scholar 

  • Gao J, Miao J, Li P-Z et al (2014) A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chem Commun 50:3786–3788

    Article  CAS  Google Scholar 

  • Gascon J, Hernández-Alonso MD, Almeida AR et al (2008) Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. Chemsuschem 1:981–983

    Article  CAS  Google Scholar 

  • Geng W, Liu H, Yao X (2013) Enhanced photocatalytic properties of titania–graphene nanocomposites: a density functional theory study. Phys Chem Chem Phys 15:6025–6033

    Article  CAS  Google Scholar 

  • Getman RB, Bae Y-S, Wilmer CE, Snurr RQ (2012) Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem Rev 112:703–723

    Article  CAS  Google Scholar 

  • Gomes Silva C, Luz I, Llabrés i Xamena FX, et al (2010) Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem—A Eur J 16:11133–11138

    Google Scholar 

  • Gou X, Cheng F, Shi Y et al (2006) Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S, Se)2 nano-/microstructures via facile solution route. J Am Chem Soc 128:7222–7229

    Article  CAS  Google Scholar 

  • Grosso D, de A. A. Soler-Illia GJ, Babonneau F, et al (2001) Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels. Adv Mater 13:1085–1090

    Google Scholar 

  • Hodgson SD, Brooks WSM, Clayton AJ et al (2013) Enhancing blue photoresponse in CdTe photovoltaics by luminescent down-shifting using semiconductor quantum dot/PMMA films. Nano Energy 2:21–27

    Article  CAS  Google Scholar 

  • Hong J, Chen C, Bedoya FE et al (2016) Carbon nitride nanosheet/metal–organic framework nanocomposites with synergistic photocatalytic activities. Catal Sci Technol 6:5042–5051

    Article  CAS  Google Scholar 

  • Horcajada P, Serre C, Maurin G et al (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780

    Article  CAS  Google Scholar 

  • Horiuchi Y, Toyao T, Saito M et al (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework. J Phys Chem C 116:20848–20853

    Article  CAS  Google Scholar 

  • Hosseini Z, Taghavinia N, Sharifi N et al (2008) Fabrication of high conductivity TiO2/Ag fibrous electrode by the electrophoretic deposition method. J Phys Chem C 112:18686–18689

    Article  CAS  Google Scholar 

  • Hou Y, Li X, Zou X et al (2009) Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. Environ Sci Technol 43:858–863

    Article  CAS  Google Scholar 

  • Hu P, Pramana SS, Cao S et al (2013) Ion-induced synthesis of uniform single-crystalline sulphide-based quaternary-alloy hexagonal nanorings for highly efficient photocatalytic hydrogen evolution. Adv Mater 25:2567–2572

    Article  CAS  Google Scholar 

  • Hu Z, Deibert BJ, Li J (2014) Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43:5815–5840

    Article  CAS  Google Scholar 

  • Huang X-C, Lin Y-Y, Zhang J-P, Chen X-M (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chemie Int Ed 45:1557–1559

    Article  CAS  Google Scholar 

  • Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A Mater Sci Process 70:365–376

    Article  CAS  Google Scholar 

  • Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catal Lett 80:111–114

    Article  CAS  Google Scholar 

  • Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355

    Article  CAS  Google Scholar 

  • Inumaru K, Kasahara T, Yasui M, Yamanaka S (2005) Direct nanocomposite of crystalline TiO2 particles and mesoporous silica as a molecular selective and highly active photocatalyst. Chem Commun 30:2131–2133

    Article  CAS  Google Scholar 

  • Iwakuni H, Shinmyou Y, Yano H et al (2007) Direct decomposition of NO into N2 and O2 on BaMnO3-based perovskite oxides. Appl Catal B 74:299–306

    Article  CAS  Google Scholar 

  • Jing W, Huang W, Xing W et al (2009) Fabrication of supported mesoporous tio2 membranes: matching the assembled and interparticle pores for an improved ultrafiltration performance. ACS Appl Mater Interfaces 1:1607–1612

    Article  CAS  Google Scholar 

  • Jones CW, Hwang S-J, Okubo T, Davis ME (2001) Synthesis of hydrophobic molecular sieves by hydrothermal treatment with acetic acid. Chem Mater 13:1041–1050

    Article  CAS  Google Scholar 

  • Kale BB, Baeg J-O, Lee SM et al (2006) CdIn2S4 nanotubes and “Marigold” nanostructures: a visible-light photocatalyst. Adv Funct Mater 16:1349–1354

    Article  CAS  Google Scholar 

  • Kaune G, Memesa M, Meier R et al (2009) Hierarchically structured titania films prepared by polymer/colloidal templating. ACS Appl Mater Interfaces 1:2862–2869

    Article  CAS  Google Scholar 

  • Kaya C, Boccaccini AR (2001) Colloidal processing of complex shape stainless steel woven fiber mat reinforced alumina ceramic matrix composites using electrophoretic deposition. J Mater Sci Lett 20:1465–1467

    Article  CAS  Google Scholar 

  • Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5). J Am Chem Soc 129:14176–14177

    Article  CAS  Google Scholar 

  • Ke F, Wang L, Zhu J (2015) Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res 8:1834–1846

    Article  CAS  Google Scholar 

  • Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100:411–419

    Article  CAS  Google Scholar 

  • Kimura T, Miyamoto N, Meng X et al (2009) Rapid fabrication of mesoporous titania films with controlled macroporosity to improve photocatalytic property. Chem—Asian J 4:1486–1493

    Article  CAS  Google Scholar 

  • Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Recent developments in titanium oxide-based photocatalysts. Appl Catal A 325:1–14

    Article  CAS  Google Scholar 

  • Kluson P, Kacer P, Cajthaml T, Kalaji M (2001) Preparation of titania mesoporous materials using a surfactant-mediated sol–gel method. J Mater Chem 11:644–651

    Article  CAS  Google Scholar 

  • Kontos AI, Likodimos V, Stergiopoulos T et al (2009) Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem Mater 21:662–672

    Article  CAS  Google Scholar 

  • Kornarakis I, Lykakis IN, Vordos N, Armatas GS (2014) Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors. Nanoscale 6:8694–8703

    Article  CAS  Google Scholar 

  • Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Article  CAS  Google Scholar 

  • Kuang D, Brillet J, Chen P et al (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2:1113–1116

    Article  CAS  Google Scholar 

  • Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    Article  CAS  Google Scholar 

  • Kuwahara Y, Yamashita H (2011) Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials. J Mater Chem 21:2407–2416

    Article  CAS  Google Scholar 

  • Laurier KGM, Vermoortele F, Ameloot R et al (2013) Iron(III)-based metal-organic frameworks as visible light photocatalysts. J Am Chem Soc 135:14488–14491

    Article  CAS  Google Scholar 

  • Lee J, Farha OK, Roberts J et al (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  • Lei Z, You W, Liu M, et al (2003) Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem Commun 2142–2143

    Google Scholar 

  • Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219

    Article  CAS  Google Scholar 

  • Li D, Chang P-C, Chien C-J, Lu JG (2010) Applications of tunable TiO2 nanotubes as nanotemplate and photovoltaic device. Chem Mater 22:5707–5711

    Article  CAS  Google Scholar 

  • Li D, Chien C-J, Deora S et al (2011) Prototype of a scalable core–shell Cu2O/TiO2 solar cell. Chem Phys Lett 501:446–450

    Article  CAS  Google Scholar 

  • Li G (1999) Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sens Actuators, B 60:64–70

    Article  CAS  Google Scholar 

  • Li J, Zeng HC (2007) Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. J Am Chem Soc 129:15839–15847

    Article  CAS  Google Scholar 

  • Li L, Peng S, Wang N et al (2015) A general strategy toward carbon cloth-based hierarchical films constructed by porous nanosheets for superior photocatalytic activity. Small 11:2429–2436

    Article  CAS  Google Scholar 

  • Linsebigler AL, Linsebigler AL, Yates JT Jr et al (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Llabrés i Xamena FX, Corma A, Garcia H (2007) Applications for metal–organic frameworks (MOFs) as quantum dot semiconductors. J Phys Chem C 111:80–85

    Google Scholar 

  • Lonyi F, Lunsford J (1992) The development of strong acidity in hexafluorosilicate-modified Y-type zeolites. J Catal 136:566–577

    Article  CAS  Google Scholar 

  • López-Muñoz M-J, van Grieken R, Aguado J, Marugán J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: Structure of the TiO2/SBA-15 photocatalysts. Catal Today 101:307–314

    Article  CAS  Google Scholar 

  • Lu F, Cai W, Zhang Y (2008) ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv Funct Mater 18:1047–1056

    Article  CAS  Google Scholar 

  • Lu G, Hupp JT (2010) Metal–organic frameworks as sensors: a ZIF-8 based Fabry–Pérot Device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833

    Article  CAS  Google Scholar 

  • Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal–organic frameworks. Chem Soc Rev 38:1248–1256

    Article  CAS  Google Scholar 

  • Macak JM, Gong BG, Hueppe M, Schmuki P (2007a) Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv Mater 19:3027–3031

    Article  CAS  Google Scholar 

  • Macak JM, Zlamal M, Krysa J, Schmuki P (2007b) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304

    Article  CAS  Google Scholar 

  • Malfatti L, Falcaro P, Pinna A et al (2014) Exfoliated graphene into highly ordered mesoporous titania films: highly performing nanocomposites from integrated processing. ACS Appl Mater Interfaces 6:795–802

    Article  CAS  Google Scholar 

  • Marien CBD, Cottineau T, Robert D, Drogui P (2016) TiO2 nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat. Appl Catal B 194:1–6

    Article  CAS  Google Scholar 

  • Martins PM, Miranda R, Marques J et al (2016) Comparative efficiency of TiO2 nanoparticles in suspension vs. immobilization into P(VDF–TrFE) porous membranes. RSC Adv 6:12708–12716

    Article  CAS  Google Scholar 

  • Meng X, Kimura T, Ohji T, Kato K (2009) Triblock copolymer templated semi-crystalline mesoporous titania films containing emulsion-induced macropores. J Mater Chem 19:1894–1900

    Article  CAS  Google Scholar 

  • Millward AR, Yaghi OM (2005) Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    Article  CAS  Google Scholar 

  • Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  • Ng YH, Lightcap IV, Goodwin K et al (2010) To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J Phys Chem Lett 1:2222–2227

    Article  CAS  Google Scholar 

  • O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Ogawa M, Ikeue K, Anpo M (2001) Transparent self-standing films of titanium-containing nanoporous silica. Chem Mater 13:2900–2904

    Article  CAS  Google Scholar 

  • Online VA, Zhang C, Qiu L et al (2013) A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J Mater Chem A 100:14329–14334

    Google Scholar 

  • Ooka C, Yoshida H, Horio M et al (2003) Adsorptive and photocatalytic performance of TiO2 pillared montmorillonite in degradation of endocrine disruptors having different hydrophobicity. Appl Catal B 41:313–321

    Article  CAS  Google Scholar 

  • Pan JH, Dou H, Xiong Z et al (2010) Porous photocatalysts for advanced water purifications. J Mater Chem 20:4512–4528

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  • Peng S, Wu Y, Zhu P et al (2011) Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films. J Mater Chem 21:15718–15726

    Article  CAS  Google Scholar 

  • Petit C, Bandosz TJ (2011) Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))-graphite oxide composites: exploring the limits of materials fabrication. Adv Funct Mater 21:2108–2117

    Article  CAS  Google Scholar 

  • Petit C, Bandosz TJ (2009a) MOF-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753–4757

    Article  CAS  Google Scholar 

  • Petit C, Bandosz TJ (2009b) MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. J Mater Chem 19:6521–6528

    Article  CAS  Google Scholar 

  • Petit C, Bandosz TJ (2010) Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: analysis of surface interactions. Adv Funct Mater 20:111–118

    Article  CAS  Google Scholar 

  • Petit C, Levasseur B, Mendoza B, Bandosz TJ (2012) Reactive adsorption of acidic gases on MOF/graphite oxide composites. Microporous Mesoporous Mater 154:107–112

    Article  CAS  Google Scholar 

  • Phan A, Doonan CJ, Uribe-Romo FJ et al (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67

    Article  CAS  Google Scholar 

  • Reddy EP, Sun B, Smirniotis PG (2004) Transition metal modified TiO2-loaded MCM-41 catalysts for visible- and UV-Light driven photodegradation of aqueous organic pollutants. J Phys Chem B 108:17198–17205

    Article  CAS  Google Scholar 

  • Rengaraj S, Venkataraj S, Tai C et al (2011) Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. Langmuir 27:5534–5541

    Article  CAS  Google Scholar 

  • Rolison DR (2003) Catalytic Nanoarchitectures–the importance of nothing and the unimportance of periodicity. Science (80-) 299:1698–1701

    Google Scholar 

  • Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chemie—Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  • Sabbaghi S, Mohammadi M, Ebadi H (2016) Photocatalytic degradation of benzene wastewater using PANI-TiO2 nanocomposite under UV and solar light radiation. J Environ Eng 142:05015003–1–05015003–7

    Article  CAS  Google Scholar 

  • Sakamoto JS, Dunn B (2002) Hierarchical battery electrodes based on inverted opal structures. J Mater Chem 12:2859–2861

    Article  CAS  Google Scholar 

  • Scotti R, D’Arienzo M, Morazzoni F, Bellobono IR (2009) Immobilization of hydrothermally produced TiO2 with different phase composition for photocatalytic degradation of phenol. Appl Catal B Environ 88:323–330

    Article  CAS  Google Scholar 

  • Shchukin DG, Caruso RA (2004) Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration. Chem Mater 16:2287–2292

    Article  CAS  Google Scholar 

  • Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Stach H, Lohse U, Thamm H, Schirmer W (1986) Adsorption equilibria of hydrocarbons on highly dealuminated zeolites. Zeolites 6:74–90

    Article  CAS  Google Scholar 

  • Sterte J (1986) Synthesis and properties of titanium oxide cross-linked montmorillonite. Clays Clay Miner 34:658–664

    Article  CAS  Google Scholar 

  • Strandwitz NC, Nonoguchi Y, Boettcher SW, Stucky GD (2010) In situ photopolymerization of pyrrole in mesoporous TiO2. Langmuir 26:5319–5322

    Article  CAS  Google Scholar 

  • Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89:1771–1789

    Article  CAS  Google Scholar 

  • Sun D, Fu Y, Liu W et al (2013) Studies on photocatalytic CO2 reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chem—A Eur J 19:14279–14285

    Article  CAS  Google Scholar 

  • Sun M, Zangari G, Shamsuzzoha M, Metzger RM (2001) Electrodeposition of highly uniform magnetic nanoparticle arrays in ordered alumite. Appl Phys Lett 78:2964–2966

    Article  CAS  Google Scholar 

  • Tang J, Wu Y, McFarland EW, Stucky GD (2004) Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films. Chem Commun 1670–1671

    Google Scholar 

  • Tian Y-Q, Zhao Y-M, Chen Z-X et al (2007) Design and Generation of extended zeolitic metal-organic frameworks (ZMOFs): synthesis and crystal structures of zinc(II) imidazolate polymers with zeolitic topologies. Chem—A Eur J 13:4146–4154

    Article  CAS  Google Scholar 

  • Treacy MMJ, Higgins JB (2007) Powder pattern identification table. In: Collection of simulated XRD powder patterns for zeolites. Elsevier, pp 10–16

    Google Scholar 

  • Tsui L-k, Wu L, Swami N, Zangari G (2012) Photoelectrochemical performance of electrodeposited Cu2O on TiO2 nanotubes. ECS Electrochem Lett 1:D15–D19

    Google Scholar 

  • Tsui L, Zangari G (2013a) The influence of morphology of electrodeposited Cu2O and Fe2O3 on the conversion efficiency of TiO2 nanotube photoelectrochemical solar cells. Electrochim Acta 100:220–225

    Article  CAS  Google Scholar 

  • Tsui LK, Zangari G (2013b) Modification of TiO2 nanotubes by Cu2O for photoelectrochemical, photocatalytic, and photovoltaic devices. Electrochim Acta 128:341–348

    Article  CAS  Google Scholar 

  • Tu W, Zhou Y, Liu Q et al (2012) Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv Funct Mater 22:1215–1221

    Article  CAS  Google Scholar 

  • van Grieken R, Aguado J, López-Muñoz MJ, Marugán J (2002) Synthesis of size-controlled silica-supported TiO2 photocatalysts. J Photochem Photobiol, A 148:315–322

    Article  Google Scholar 

  • Wang C, Xie Z, DeKrafft KE, Lin W (2011) Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454

    Article  CAS  Google Scholar 

  • Wang CC, Li JR, Lv XL et al (2014a) Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ Sci 7:2831–2867

    Article  CAS  Google Scholar 

  • Wang D, Choi D, Yang Z et al (2008a) Synthesis and Li-Ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem Mater 20:3435–3442

    Article  CAS  Google Scholar 

  • Wang D, Huang R, Liu W et al (2014b) Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal 4:4254–4260

    Article  CAS  Google Scholar 

  • Wang H, Hu Y, Jiang Y et al (2013a) Facile synthesis and excellent recyclable photocatalytic activity of pine cone-like Fe3O4@Cu2O/Cu porous nanocomposites. Dalt Trans 42:4915–4921

    Article  CAS  Google Scholar 

  • Wang H, Yuan X, Wu Y et al (2015a) Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl Catal B 174–175:445–454

    Article  CAS  Google Scholar 

  • Wang J-L, Wang C, Lin W (2012) Metal-organic frameworks for light harvesting and photocatalysis. ACS Catal 2:2630–2640

    Article  CAS  Google Scholar 

  • Wang R, Gu L, Zhou J, et al (2015b) Quasi-polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. Adv Mater Interfaces 2:1500037(1–5)

    Google Scholar 

  • Wang W, Ng TW, Ho WK et al (2013b) CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms. Appl Catal B 129:482–490

    Article  CAS  Google Scholar 

  • Wang X, Mitchell DRG, Prince K et al (2008b) Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications. Chem Mater 20:3917–3926

    Article  CAS  Google Scholar 

  • Wang X, Yu JC, Ho C et al (2005) Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir 21:2552–2559

    Article  CAS  Google Scholar 

  • Wei W, Yu C, Zhao Q et al (2013) Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures. Chem—A Eur J 19:566–577

    Article  CAS  Google Scholar 

  • Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239

    Article  CAS  Google Scholar 

  • Xiong C, Balkus KJ (2005) Fabrication of TiO2 nanofibers from a mesoporous silica film. Chem Mater 17:5136–5140

    Article  CAS  Google Scholar 

  • Xiong L, Huang S, Yang X et al (2011) p-Type and n-type Cu2O semiconductor thin films: controllable preparation by simple solvothermal method and photoelectrochemical properties. Electrochim Acta 56:2735–2739

    Article  CAS  Google Scholar 

  • Xu B, He P, Liu H et al (2014a) A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew Chemie Int Ed 53:2339–2343

    Article  CAS  Google Scholar 

  • Xu W-T, Ma L, Ke F et al (2014b) Metal–organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalt Trans 43:3792–3798

    Article  CAS  Google Scholar 

  • Xu Y, Langford CH (1995) Enhanced photoactivity of a titanium(IV) oxide supported on ZSM5 and zeolite a at low coverage. J Phys Chem 99:11501–11507

    Article  CAS  Google Scholar 

  • Xu Y, Lv M, Yang H et al (2015) BiVO4/MIL-101 composites having the synergistically enhanced visible light photocatalytic activity. RSC Adv 5:43473–43479

    CAS  Google Scholar 

  • Xuzhuang Y, Yang D, Huaiyong Z et al (2009) Mesoporous structure with size controllable anatase attached on silicate layers for efficient photocatalysis. J Phys Chem C 113:8243–8248

    Article  CAS  Google Scholar 

  • Yamanaka S, Nishihara T, Hattori M, Suzuki Y (1987) Preparation and properties of titania pillared clay. Mater Chem Phys 17:87–101

    Article  CAS  Google Scholar 

  • Yang H, He X-W, Wang F et al (2012) Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J Mater Chem 22:21849–21851

    Article  CAS  Google Scholar 

  • Yang P (1998) Hierarchically ordered oxides. Science 282:2244–2246

    Article  CAS  Google Scholar 

  • Yoneyama H, Haga S, Yamanaka S (1989) Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay. J Phys Chem 93:4833–4837

    Article  CAS  Google Scholar 

  • Yoshitake H, Sugihara T, Tatsumi T (2002) Preparation of wormhole-like mesoporous tio2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chem Mater 14:1023–1029

    Article  CAS  Google Scholar 

  • Yu J, Su Y, Cheng B (2007) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv Funct Mater 17:1984–1990

    Article  CAS  Google Scholar 

  • Yuan P, Yin X, He H et al (2006) Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by TiCl4 hydrolysis method. Microporous Mesoporous Mater 93:240–247

    Article  CAS  Google Scholar 

  • Yue W, Xu X, Irvine JTS et al (2009) Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chem Mater 21:2540–2546

    Article  CAS  Google Scholar 

  • Zhang F, Shi J, Jin Y et al (2015) Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem Eng J 259:183–190

    Article  CAS  Google Scholar 

  • Zhang J, Minagawa M, Matsuoka M et al (2000) Photocatalytic decomposition of NO on Ti-HMS mesoporous zeolite catalysts. Catal Letters 66:241–243

    Article  CAS  Google Scholar 

  • Zhang L, Yu JC (2003) A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity. Chem Commun 2078–2079

    Google Scholar 

  • Zhang SG, Fujii Y, Yamashita H et al (1997) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. Chem Lett 26:659–660

    Article  Google Scholar 

  • Zhang X, Zhang F, Chan K-Y (2005) Synthesis of titania–silica mixed oxide mesoporous materials, characterization and photocatalytic properties. Appl Catal A 284:193–198

    Article  CAS  Google Scholar 

  • Zhao D, Peng T, Lu L et al (2008) Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. J Phys Chem C 112:8486–8494

    Article  CAS  Google Scholar 

  • Zhou B, Wang H, Liu Z et al (2011) Enhanced photocatalytic activity of flowerlike Cu2O/Cu prepared using solvent-thermal route. Mater Chem Phys 126:847–852

    Article  CAS  Google Scholar 

  • Zhou H-C Joe, Kitagawa S (2014) Metal–Organic Frameworks (MOFs). Chem Soc Rev 43:5415–5418

    Google Scholar 

  • Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674

    Article  CAS  Google Scholar 

  • Zhou J, Tian G, Chen Y et al (2013a) In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance. Chem Commun 49:2237–2239

    Article  CAS  Google Scholar 

  • Zhou J-J, Wang R, Liu X-L et al (2015) In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation. Appl Surf Sci 346:278–283

    Article  CAS  Google Scholar 

  • Zhou T, Du Y, Borgna A et al (2013b) Post-synthesis modification of a metal–organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ Sci 6:3229–3234

    Article  CAS  Google Scholar 

  • Zhou W, Fu H (2013) Mesoporous TiO2: preparation, doping, and as a composite for photocatalysis. ChemCatChem 5:885–894

    Article  CAS  Google Scholar 

  • Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74

    Article  CAS  Google Scholar 

  • Zimny K, Roques-Carmes T, Carteret C et al (2012) Synthesis and photoactivity of ordered mesoporous titania with a semicrystalline framework. J Phys Chem C 116:6585–6594

    Article  CAS  Google Scholar 

  • Zwilling V, Aucouturier M, Darque-Ceretti E (1999a) Anodic oxidation of titanium and TA6 V alloy in chromic media. an electrochemical approach. Electrochim Acta 45:921–929

    Article  CAS  Google Scholar 

  • Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999b) Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf Interface Anal 27:629–637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahra Hosseini or Samad Sabbaghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hosseini, Z., Sabbaghi, S., Mirbagheri, N.S. (2017). Nanoporous Nanocomposite Materials for Photocatalysis. In: Khan, M., Pradhan, D., Sohn, Y. (eds) Nanocomposites for Visible Light-induced Photocatalysis. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-62446-4_6

Download citation

Publish with us

Policies and ethics