Mixed Metal Oxides Nanocomposites for Visible Light Induced Photocatalysis

  • R. Ajay Rakkesh
  • D. Durgalakshmi
  • S. BalakumarEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Mixed metal oxide nanocomposite assisted photocatalysis has gained enormous interest among the scientists as a potential candidate for degrading environmentally harmful pollutants. This chapter reviews the recent advancement in the field of photocatalysis, focusing on the scientific challenges and opportunities offered by semiconducting mixed metal oxide materials. This review begins with a literature review to explore the suitable material and to optimize their energy band configurations for visible light active photocatalytic applications. This continues with examining the design and fabrication of hybrid nanocomposite materials for efficient photocatalytic performance. Finally, the discussion is meant on the synthesis methods for understanding the key aspects to engineer the nanocomposites for its use as an efficient and sustainable photocatalytic materials. This chapter also emphasizes vital problem that should be noted in upcoming research activities.


Nanocomposites Metal oxide nanostructures Photocatalysis Water remediation Charge recombination 


  1. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271CrossRefGoogle Scholar
  2. Bi YP, Ouyang SX, Umezawa N, Cao JY, Ye JH (2011) J Am Chem Soc 133:6490–6492CrossRefGoogle Scholar
  3. Byrappa K, Yoshimura K (2001) Handbook of hydrothermal technology. Noyes Publications, New Jersey, USAGoogle Scholar
  4. Chen X, Mao SS (2007) Chem Rev 107:2891–2959CrossRefGoogle Scholar
  5. Chen D, Ye JH (2008) Adv Func Mater 18:1922–1928CrossRefGoogle Scholar
  6. Chen XQ, Ye JH, Ouyang SX, Kako T, Li ZS, Zou ZG (2011) ACS Nano 5:4310–4318CrossRefGoogle Scholar
  7. Chen H, Gu M, Pu X, Zhu J, Cheng L (2016) Fabrication of SnO @SnS heterostructure with enhanced visible light photocatalytic activity. Mater Res Exp 3(6):065002Google Scholar
  8. Cividanes LS, Campos TMB, Rodrigues LA (2010) J Sol-Gel Sci Technol 55:111–125CrossRefGoogle Scholar
  9. Danks AE, Hall SR, Schnepp Z (2016) Mater Horiz 3:91–112CrossRefGoogle Scholar
  10. Filipovic L, Selberherr S, Mutinati GC, Brunet E, Steinhauer S, Köck A, Schrank F (2013) In: Proceedings of the World Congress on Engineering, vol 2. pp 987–992Google Scholar
  11. Fujishima A, Honda K (1972) Nature 238:37–38CrossRefGoogle Scholar
  12. Greene LE, Law M, Yuhas BD, Yang PD (2007) J Phys Chem C 111:18451–18456CrossRefGoogle Scholar
  13. Gupta A, Singh P, Shivakumar C (2010) Solid State Commun 150:386–388CrossRefGoogle Scholar
  14. Hench LL, West JK (1990) Chem Rev 90:33–72CrossRefGoogle Scholar
  15. Hou H, Shang M, Gao F, Wang L, Liu Q, Zheng J, Yang Z, Yang W (2016) ACS Appl Mater Interfaces 8:20128–20137CrossRefGoogle Scholar
  16. Hu CC, Teng HS (2010) J Catal 272:1–8CrossRefGoogle Scholar
  17. Humayun M, Zada A, Li Z, Xie M, Zhang X, Qu Y, Raziq F, Jing L (2016) Appl Catal B 180:219–226CrossRefGoogle Scholar
  18. Huo P, Tang Y, Zhou M, Li J, Ye Z, Ma C, Yu L, Yan Y (2016) J Indus Eng Chem 37:340–346CrossRefGoogle Scholar
  19. In S, Orlov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) J Am Chem Soc 129:13790–13791CrossRefGoogle Scholar
  20. Ismail AA, Ahmed IA, Al-Sayari H, Robben SAL, Bahnemann DW (2016) J Hazard Mater 307:43–54CrossRefGoogle Scholar
  21. Jia Y, Zhan S, Ma S, Zhou Q (2016) ACS Appl Mater Interfaces 8:6841–6851CrossRefGoogle Scholar
  22. Kamat PV (2007) J Phys Chem C 111:2834–2860CrossRefGoogle Scholar
  23. Khatami SMN, Ilegbusi OJ, Trakhtenberg LI (2015) Mater Sci Appl 6:68–77Google Scholar
  24. Li XK, Kikugawa N, Ye JH (2008) Adv Mater 20:3816–3820CrossRefGoogle Scholar
  25. Li QY, Kako T, Ye JH (2010) Chem Commun 46:5352–5354CrossRefGoogle Scholar
  26. Li B, Liu T, Hu L, Wang Y (2013) J Phys Chem Solids 74:635–640CrossRefGoogle Scholar
  27. Lobachev AN (ed) (1973) Crystallization processes under hydrothermal conditions. Consultants Bureau, New YorkGoogle Scholar
  28. Maeda K, Domen K (2010) Chem Mater 22:612–623CrossRefGoogle Scholar
  29. Mills A, Hunte SL (1997) J Photochem Photobiol, A 108:1–3CrossRefGoogle Scholar
  30. Nejati K (2012) Cryst Res Technol 47:567–572CrossRefGoogle Scholar
  31. Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC (2016) Prog Mater Sci 77:1–79CrossRefGoogle Scholar
  32. Pang YL, Lima S, Ong HC, Chong WT (2016) Ceram Int 42:9–34CrossRefGoogle Scholar
  33. Papaefthimiou P, Ioannides T, Verykios XE (1998) Appl Catal B 15:75–92CrossRefGoogle Scholar
  34. Qiu XQ, Miyauchi M, Yu HG, Irie H, Hashimoto K (2010) J Am Chem Soc 132:15259–15267CrossRefGoogle Scholar
  35. Rakkesh RA (2015) Graphene Based Nanoassemblies: Role of Interfacial Charge Transfer Effect and Chemical Bonding Processes for Environmental Cleaning Applications, Ph.D. Thesis, NCNSNT, University of Madras, IndiaGoogle Scholar
  36. Rakkesh RA, Balakumar S (2013) J Nanosci Nanotechnol 13:370–376CrossRefGoogle Scholar
  37. Rakkesh RA, Balakumar S (2015) J Nanosci Nanotechnol 15:4316–4324CrossRefGoogle Scholar
  38. Rakkesh RA, Durgalakshmi D, Balakumar S (2014) J Mater Chem C 2:6827–6834CrossRefGoogle Scholar
  39. Rakkesh RA, Durgalakshmi D, Balakumar S (2015) RSC Adv 5:18633–18641CrossRefGoogle Scholar
  40. Rakkesh RA, Durgalakshmi D, Balakumar S (2016) RSC Adv 6:34342–34349CrossRefGoogle Scholar
  41. Rawalekar S, Mokari T (2013) Adv Energy Mater 3:12–27CrossRefGoogle Scholar
  42. Regulacio MD, Han MY (2016) Acc Chem Res 49:511–519CrossRefGoogle Scholar
  43. Roy R (1994) J Solid State Chem 111:11–17CrossRefGoogle Scholar
  44. Schmidt H (2001) Appl Organometal Chem 15:331–343CrossRefGoogle Scholar
  45. Sharma G, Kumar D, Kumar A, Muhtaseb AH, Pathania D, Naushad M, Mola GT (2017) Mater Sci Eng, C 71:1216–1230CrossRefGoogle Scholar
  46. Tahir M, Amin NS (2013) Energy Convers Manage 76:194–214CrossRefGoogle Scholar
  47. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Adv Mater 24:229–251CrossRefGoogle Scholar
  48. Wang DF, Kako T, Ye JH (2008) J Am Chem Soc 130:2724–2725CrossRefGoogle Scholar
  49. Wang K, Chen JJ, Zeng ZM, Tarr J, Zhou WL, Zhang Y, Yan YF (2010) Appl Phys Lett 96:123105CrossRefGoogle Scholar
  50. Wang W, Zhu D, Shen Z, Peng J, Luo J, Liu X (2016) Ind Eng Chem Res 55:6373–6383CrossRefGoogle Scholar
  51. Widiyastuti W, Wang WN, Lenggoro IW, Iskandar F, Okuyama K (2007) J Mater Res 22:1888–1898CrossRefGoogle Scholar
  52. Xi GC, Ye JH (2010) Chem Commun 46:1893–1895CrossRefGoogle Scholar
  53. Xie L, Liu P, Zheng Z, Weng S, Huang J (2016) Appl Cataly B184:347–354CrossRefGoogle Scholar
  54. Xu Y, Schoonen MAA (2000) Am Mineral 85:543–556CrossRefGoogle Scholar
  55. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Nature 453:638–641CrossRefGoogle Scholar
  56. Yi ZG, Ye JH (2009) J Appl Phys 106:074910–074915CrossRefGoogle Scholar
  57. Zeng HB, Cai WP, Liu PS, Xu XX, Zhou HJ, Klingshirn C (2008) ACS Nano 2:1661–1670CrossRefGoogle Scholar
  58. Zhang Z, Wang C, Zakaria R, Yin JY (1998) J Phys Chem B 102:10871–10878CrossRefGoogle Scholar
  59. Zhang YG, Ma LL, Li JL, Yu Y (2007) Environ Sci Technol 41:6264–6269CrossRefGoogle Scholar
  60. Zhang Q, Fu Y, Wu Y, Zhang Y, Zuo T (2016) ACS Sustain Chem Eng 4:1794–1803CrossRefGoogle Scholar
  61. Zhao H, Fu W, Yang H, Xu Y, Zhao W, Zhang Y, Chen H, Jing Q, Qi X, Cao J, Zhou X, Li Y (2011) Appl Surf Sci 257:8778–8783CrossRefGoogle Scholar
  62. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Whangbo M (2011) J Mater Chem 21:9079–9087CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. Ajay Rakkesh
    • 1
  • D. Durgalakshmi
    • 1
  • S. Balakumar
    • 1
    Email author
  1. 1.National Centre for Nanoscience and NanotechnologyUniversity of Madras, Guindy CampusChennaiIndia

Personalised recommendations