Role of Metal Nanoparticles and Its Surface Plasmon Activity on Nanocomposites for Visible Light-Induced Catalysis

  • Anup Kumar Sasmal
  • Tarasankar PalEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Heterogeneous photocatalysis has become an encouraging reaction technique to combat energy crisis and global environmental issues. Visible light (~400 nm–750 nm)-driven photocatalysis is the most imperative heterogeneous photocatalysis because of its selective product delivery, easy operation, and utilization of abundant available clean energy resource. In this context, utilization of clean, and available sunlight (having 44% visible light) could be a pleasant platform for solving energy and environmental problems. Thus visible light-driven photocatalysis is highly demanding, and so designing of such photocatalysts and their exploitation in catalysis under visible light has become a central research theme in catalysis. Surface plasmon resonance (SPR) active nanomaterials or composites are very effective to carry out catalytic redox reactions in presence of visible light due to the electron–hole formation, and termed as visible light plasmonic photocatalyst. Processes can be demonstrated through oxidation by “hole” and reduction by “hot electron”. Herein, we discussed on fabrication or synthesis of visible light plasmonic photocatalysts, and their application on catalytic reaction under visible light illumination. Visible light-induced SPR with detailed understanding of the fate of generated electron and hole on the redox reactions has been discussed. We have depicted various types of catalytic reactions such as photodegradation of large organic dyes (organic transformation), oxidation reaction, reduction reaction, hydroxylation, imine synthesis, water splitting reaction, biaryl synthesis, and CO2 reduction.


Plasmonic photocatalyst Visible light Surface plasmon resonance Electron Hole Catalysis 


  1. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  2. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  3. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824CrossRefGoogle Scholar
  4. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, WeinheimCrossRefGoogle Scholar
  5. Brown MD, Suteewong T, Kumar RSS, D’Innocenzo V, Petrozza A, Lee M, Wiesner U, Snaith HJ (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett 11:438–445CrossRefGoogle Scholar
  6. Brown AM, Sundararaman R, Narang P, Goddard WA III, Atwater HA (2016) Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10:957–966CrossRefGoogle Scholar
  7. Brus L (2008) Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc Chem Res 41:1742–1749CrossRefGoogle Scholar
  8. Cao XB, Gu L, Zhuge LJ, Gao WJ, Wang WC, Wu SF (2006) Template-free preparation of hollow Sb2S3 microspheres as supports for Ag nanoparticles and photocatalytic properties of the constructed metal-semiconductor nanostructures. Adv Funct Mater 16:896–902CrossRefGoogle Scholar
  9. Chen S, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten R (1998) Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280:2098–2101CrossRefGoogle Scholar
  10. Chen CK, Chen HM, Chen C-J, Liu R-S (2013) Plasmon-enhanced near-infrared-active materials in photoelectrochemical water splitting. Chem Commun 49:7917–7919CrossRefGoogle Scholar
  11. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009–2026CrossRefGoogle Scholar
  12. Cheng H, Fuku K, Kuwahara Y, Moriab K, Yamashita H (2015) Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J Mater Chem A 3:5244–5258CrossRefGoogle Scholar
  13. Chulkov EV, Borisov AG, Gauyacq JP, Sanchez-Portal D, Silkin VM, Zhukov VP, Echenique PM (2006) Electronic excitations in metals and at metal surfaces. Chem Rev 106:4160–4206CrossRefGoogle Scholar
  14. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103CrossRefGoogle Scholar
  15. Cushing SK, Li JT, Meng F, Senty TR, Suri S, Zhi MJ, Li M, Bristow AD, Wu NQ (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134:15033–15041CrossRefGoogle Scholar
  16. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  17. Dhara S, Giri P (2011) On the origin of enhanced photoconduction and photoluminescence from Au and Ti nanoparticles decorated aligned ZnO nanowire heterostructures. J Appl Phys 110:124317CrossRefGoogle Scholar
  18. Dutta S, Ray C, Sasmal AK, Negishi Y, Pal T (2016) Fabrication of dog-bone shaped Au NRcore-Pt/Pdshell trimetallic nanoparticle-decorated reduced graphene oxide nanosheets for excellent electrocatalysis. J Mater Chem A 4:3765–3776CrossRefGoogle Scholar
  19. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  20. Feng S, Wang M, Zhou Y, Li P, Tu W, Zou Z (2015) Double-shelled plasmonic Ag–TiO2 hollow spheres toward visible light-active hotocatalytic conversion of CO2 into solar fuel. APL Mater 3:104416CrossRefGoogle Scholar
  21. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  22. Gao H, Liu C, Jeong HE, Yang P (2012) Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 6:234–240CrossRefGoogle Scholar
  23. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefGoogle Scholar
  24. Gonzalez-Bejar M, Peters K, Hallett-Tapley GL, Grenier M, Scaiano JC (2013) Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem Commun 49:1732–1734CrossRefGoogle Scholar
  25. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961CrossRefGoogle Scholar
  26. Hallett-Tapley GL, Silvero MJ, Gonzalez-Bejar M, Grenier M, Netto-Ferreira JC, Scaiano JC (2011) Plasmon-mediated catalytic oxidation of sec-phenethyl and benzyl alcohols. J Phys Chem C 115:10784–10790CrossRefGoogle Scholar
  27. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111:3858–3887CrossRefGoogle Scholar
  28. Henglein A (1999) Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 15:6738–6744CrossRefGoogle Scholar
  29. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  30. Hou W, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23:1612–1619CrossRefGoogle Scholar
  31. Hou WB, Hung WH, Pavaskar P, Goeppert A, Aykol M, Cronin SB (2011) Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal 1:929–936CrossRefGoogle Scholar
  32. Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110:4066–4072CrossRefGoogle Scholar
  33. Ide Y, Nakamura N, Hattori H, Ogino R, Ogawa M, Sadakane M, Sano T (2011) Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2 atmosphere. Chem Commun 47:11531–11533CrossRefGoogle Scholar
  34. Inagaki T, Kagami K, Arakawa ET (1981) Photoacoustic observation of nonradiative decay of surface plasmons in silver. Phys Rev B 24:3644–3646CrossRefGoogle Scholar
  35. Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133:5202–5205CrossRefGoogle Scholar
  36. Jiang R, Li B, Fang C, Wang J (2014) Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv Mater 26:5274–5309CrossRefGoogle Scholar
  37. Kale MJ, Avanesian T, Christopher P (2014) Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:116–128CrossRefGoogle Scholar
  38. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  39. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n–TiO2. Science 297:2243–2245CrossRefGoogle Scholar
  40. Klinkova A, Ahmed A, Choueiri RM, Guestb JR, Kumacheva E (2016) Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance. RSC Adv 6:47907–47911CrossRefGoogle Scholar
  41. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan L, Dasari RR, Feld MR (1997) Single molecule detection using surface-enhanced raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  42. Kochuveedu ST, Jang YH, Kim DH (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42:8467–8493CrossRefGoogle Scholar
  43. Kominami H, Tanaka A, Hashimoto K (2011) Gold nanoparticles supported on cerium(IV) oxide powder for mineralization of organic acids in aqueous suspensions under irradiation of visible light of λ = 530 nm. Appl Catal A 397:121–126CrossRefGoogle Scholar
  44. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  45. Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486CrossRefGoogle Scholar
  46. Lantman EMV, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM (2012) Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat Nanotechnol 7:583–586CrossRefGoogle Scholar
  47. Larsson EM, Langhammer C, Zori I, Kasemo B (2009) Nanoplasmonic probes of catalytic reactions. Science 326:1091–1094CrossRefGoogle Scholar
  48. Lerme J, Baida H, Bonnet C, Broyer M, Cottancin E, Crut A, Maioli P, Fatti ND, Vallee F, Pellarin M (2010) Size dependence of the surface plasmon resonance damping in metal nanospheres. J Phys Chem Lett 1:2922–2928CrossRefGoogle Scholar
  49. Li R, Chen W, Kobayashib H, Ma C (2010) Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chem 12:212–215CrossRefGoogle Scholar
  50. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921CrossRefGoogle Scholar
  51. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  52. Liu Q, Zhou Y, Kou JH, Chen XY, Tian ZP, Gao J, Yan SC, Zou ZG (2010) High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc 132:14385–14387CrossRefGoogle Scholar
  53. Lou Z, Wang Z, Huang B, Dai Y (2014) Synthesis and activity of plasmonic photocatalysts. ChemCatChem 6:2456–2476CrossRefGoogle Scholar
  54. Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440:295CrossRefGoogle Scholar
  55. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Koel BE, Atwater HA (2001) Plasmonics-a route to nanoscale optical devices. Adv Mater 13:1501–1505CrossRefGoogle Scholar
  56. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445CrossRefGoogle Scholar
  57. Miyaura N, Yamada K, Suzuki A (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tet Lett 20:3437–3440CrossRefGoogle Scholar
  58. Mondal C, Pal J, Ganguly M, Sinha AK, Jana J, Pal T (2014) A one pot synthesis of Au-ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity. New J Chem 38:2999–3005CrossRefGoogle Scholar
  59. Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ (2013) Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett 13:240–247CrossRefGoogle Scholar
  60. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771–3782CrossRefGoogle Scholar
  61. Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904CrossRefGoogle Scholar
  62. Naya S, Kimura K, Tada H (2013) One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium(IV) oxide plasmon photocatalyst. ACS Catal 3:10–13CrossRefGoogle Scholar
  63. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  64. Pal J, Sasmal AK, Ganguly M, Pal T (2015) Surface plasmon effect of cu and presence of n-p heterojunction in oxide nanocomposites for visible light photocatalysis. J Phys Chem C 119:3780–3790CrossRefGoogle Scholar
  65. Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T (2004) Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 20:9889–9892CrossRefGoogle Scholar
  66. Praharaj S, Nath S, Panigrahi S, Ghosh SK, Basu S, Pande S, Jana S, Pal T (2006) Layer-by-layer deposition of bimetallic nanoshells on functionalized polystyrene beads. Inorg Chem 45:1439–1441CrossRefGoogle Scholar
  67. Primo A, Corma A, Garcıa H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910CrossRefGoogle Scholar
  68. Renger J, Quidant R, Hulst NV, Novotny L (2010) Surface-enhanced nonlinear four-wave mixing. Phys Rev Lett 104:046803CrossRefGoogle Scholar
  69. Roy A, Pal T (2015) Nucleophile‐induced shift of surface plasmon resonance and its implication in chemistry. Sur Modif Biopolymers (Thakur VK, Singha AS (eds), Willey)Google Scholar
  70. Sarina S, Waclawik ER, Zhu H (2013a) Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15:1814–1833CrossRefGoogle Scholar
  71. Sarina S, Zhu HY, Jaatinen E, Xiao Q, Liu HW, Jia JF, Chen C, Zhao J (2013b) Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc 135:5793–5801CrossRefGoogle Scholar
  72. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRefGoogle Scholar
  73. Shahzad A, Kim W-S, Yu T (2016) A facile synthesis of Ag/AgCl hybrid nanostructures with tunable morphologies and compositions as advanced visible light plasmonic photocatalysts. Dalton Trans 45:9158–9165CrossRefGoogle Scholar
  74. Sharma K, Kumar M, Bhalla V (2015) Aggregates of the pentacenequinone derivative as reactors for the preparation of Ag@Cu2O core—shell NPs: an active photocatalyst for Suzuki and Suzuki type coupling reactions. Chem Commun 51:12529–12532CrossRefGoogle Scholar
  75. Sinha AK, Jana S, Pande S, Sarkar S, Pradhan M, Basu M, Saha S, Pal A, Pal T (2009) New hydrothermal process for hierarchical TiO2 nanostructures. CrystEngComm 11:1210–1212CrossRefGoogle Scholar
  76. Sinha AK, Basu M, Pradhan M, Sarkar S, Pal T (2010) Fabrication of large-scale hierarchical ZnO hollow spheroids for hydrophobicity and photocatalysis. Chem Eur J 16:7865–7874CrossRefGoogle Scholar
  77. Skrabalak SE, Chen JY, Sun YG, Lu XM, Au L, Cobley CM, Xia YN (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595CrossRefGoogle Scholar
  78. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  79. Sung-Suh HM, Choi JR, Hah HJ, Koo SM, Bae YC (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol, A 163:37–44CrossRefGoogle Scholar
  80. Tanaka A, Nishino Y, Sakaguchi S, Yoshikawa T, Imamura K, Hashimoto K, Kominami H (2013) Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. Chem Commun 49:2551–2553CrossRefGoogle Scholar
  81. Tang JW, Zou ZG, Ye JH (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43: 4463–4466Google Scholar
  82. Torimoto T, Horibe H, Kameyama T, Okazaki K, Ikeda S, Matsumura M, Ishikawa A, Ishihara H (2011) Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J Phys Chem Lett 2:2057–2062CrossRefGoogle Scholar
  83. Trinh TT, Sato R, Sakamoto M, Fujiyoshi Y, Haruta M, Kurata H, Teranishi T (2015) Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction. Nanoscale 7:12435–12444CrossRefGoogle Scholar
  84. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315CrossRefGoogle Scholar
  85. Wang C, Astruc D (2014) Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem Soc Rev 43:7188–7216CrossRefGoogle Scholar
  86. Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40:53–62CrossRefGoogle Scholar
  87. Wang P, Huang B, Daia Y, Whangbo M-H (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825CrossRefGoogle Scholar
  88. Wang P, Tang Y, Dong Z, Chenc Z, Lim T-T (2013a) Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. J Mater Chem A 1:4718–4727CrossRefGoogle Scholar
  89. Wang F, Li CH, Chen HJ, Jiang RN, Sun LD, Li Q, Wang JF, Yu JC, Yan CH (2013b) Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 135:5588–5601CrossRefGoogle Scholar
  90. Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy Environ Sci 5:5133–5146CrossRefGoogle Scholar
  91. Watanabe K, Menzel D, Nilius N, Freund H-J (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301–4320CrossRefGoogle Scholar
  92. Xiao M, Jiang R, Wang F, Fang C, Wang J, Yu JC (2013) Plasmon-enhanced chemical reactions. J Mater Chem A 1:5790–5805CrossRefGoogle Scholar
  93. Xue J, Ma S, Zhou Y, Zewu Z, He M (2015) Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interfaces 7:9630–9637CrossRefGoogle Scholar
  94. Yamada K, Miyajima K, Mafun F (2007) Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband. J Phys Chem C 111:11246–11251CrossRefGoogle Scholar
  95. Yu JG, Tao HZ, Cheng B (2010) In situ monitoring of heterogeneous catalytic reactions. ChemPhysChem 11:1617–1618CrossRefGoogle Scholar
  96. Zeng C, Hu Y, Guo Y, Zhang T, Dong F, Zhang Y, Huang H (2016) Facile in situ self-sacrifice approach to ternary hierarchical architecture Ag/AgX (X = Cl, Br, I)/AgIO3 distinctively promoting visible-light photocatalysis with composition-dependent mechanism. ACS Sustainable Chem Eng 4:3305–3315CrossRefGoogle Scholar
  97. Zhang Q, Lima DQ, Lee I, Zaera F, Chi M, Yin Y (2011) A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew Chem Int Ed 50:7088–7092CrossRefGoogle Scholar
  98. Zhang XM, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76:046401CrossRefGoogle Scholar
  99. Zhao J, Pinchuk AO, McMahon JM, Li SZ, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710–1720CrossRefGoogle Scholar
  100. Zheng XX, Liu Q, Jing C, Li Y, Li D, Luo WJ, Wen YQ, He Y, Huang Q, Long YT, Fan CH (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed 50:11994CrossRefGoogle Scholar
  101. Zhou X, Liu G, Yu J, Fan W (2012) Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J Mater Chem 22:21337–21354CrossRefGoogle Scholar
  102. Zhu H, Chen X, Zheng Z, Ke X, Jaatinen E, Zhao J, Guo C, Xied T, Wang D (2009) Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chem Commun 7524–7526Google Scholar
  103. Zhu H, Ke X, Yang X, Sarina S, Liu H (2010) Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew Chem Int Ed 49:9657–9661CrossRefGoogle Scholar
  104. Zhu SY, Liang SJ, Gu Q, Xie LY, Wang JX, Ding ZX, Liu P (2012) Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity. Appl Catal B 119:146–155CrossRefGoogle Scholar
  105. Zou Z, Ye J, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of TechnologyKharagpurIndia

Personalised recommendations