Advertisement

Nanocomposites and Its Importance in Photocatalysis

  • Hossam Eldin Abdel Fattah Ahmed Hamed El NazerEmail author
  • Samir Tawfik Gaballah
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Photocatalysis is a promising technique for solving the worldwide energy and environmental crisis. The key challenge in this technique is to develop efficient photocatalysts that have to satisfy several criteria such as high chemical and photochemical stability as well as effective charge separation and strong light absorption. Synthesis of semiconducting nanocomposites is considered to be a promising way to achieve efficient photocatalysts. This improved photocatalytic activity of the nanocomposite photocatalysts is attributed to the enhancement of the charge separation, irradiation absorption, and photo and chemical stability. This chapter summarizes many research studies on semiconducting nanocomposites for different photocatalytic applications. Different consistencies for photocatalytic organic transformations have been discussed herein.

Keywords

Photocatalysis Nanocomposites Semiconducting Selective organic transformation 

References

  1. Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516CrossRefGoogle Scholar
  2. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  3. Bannat I, Wessels K, Oekermann T, Rathousky J, Bahnemann D, Wark M (2009) Improving the photocatalytic performance of mesoporous titania films by modification with gold nanostructures. Chem Mater 21:1645–1653CrossRefGoogle Scholar
  4. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solutions. Marcel Dekker, New YorkGoogle Scholar
  5. Barolo G, Livraghi S, Chiesa M, Paganini MC, Giamello E (2012) Mechanism of the photoactivity under visible light of N-doped titanium dioxide. charge carriers migration in irradiated N–TiO2 investigated by electron paramagnetic resonance. J Phys Chem. C 116:20887–20894CrossRefGoogle Scholar
  6. Cao S-W, Yuan Y-P, Fang J, Shahjamali MM, Boey FYC, Barber J, Joachim Loo SC, Xue C (2013) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrogen Energy 38:1258–1266CrossRefGoogle Scholar
  7. Cheah AJ, Chiu WS, Khiew PS, Nakajima H, Saisopa T, Songsiriritthigul P, Radiman S, Hamid MAA (2015) Facile synthesis of a Ag/MoS2 nanocomposite photocatalyst for enhanced visible-light driven hydrogen gas evolution. Catal Sci Technol 5:4133–4143CrossRefGoogle Scholar
  8. Clark JH, Miller JM (1977) Hydrogen bonding in organic synthesis V: potassium fluoride in carboxylic acids as an alternative to crown ether with acid salts in the preparation of phenacyl esters. Tetrahedron Lett 18:599–602CrossRefGoogle Scholar
  9. Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D (2004) Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 Nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. J Am Chem Soc 126:3868–3879CrossRefGoogle Scholar
  10. Einaga H (2006) Effect of silver deposition on TiO2 for photocatalytic oxidation of benzene in the gas phase. React Kinet Catal Lett 88:357–362CrossRefGoogle Scholar
  11. Einaga H, Ibusuki T, Futamura S (2004) Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compound. Environ Sci and Technol 38:285–289CrossRefGoogle Scholar
  12. Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z (2012) An amine-functionalized titanium metal—organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem 124:3420–3423CrossRefGoogle Scholar
  13. Fuldner S, Mild R, Siegmund HI, Schroeder JA, Gruber M, Konig B (2010) Green-light photocatalytic reduction using dye-sensitized TiO2 and transition metal nanoparticles. Green Chem 12:400–406CrossRefGoogle Scholar
  14. Fuldner S, Mitkina T, Trottmann T, Frimberger A, Gruber M, Konig B (2011) Urea derivatives enhance the photocatalytic activity of dye-modified titanium dioxide. Photochem Photobiol Sci 10:623–625CrossRefGoogle Scholar
  15. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRefGoogle Scholar
  16. Gupta N, Bansal P, Pal B (2015) Metal ion-TiO2 nanocomposites for the selective photooxidation of benzene to phenol and cycloalkanol to cycloalkanone. J Exp Nanosci 10:148–160CrossRefGoogle Scholar
  17. Habibi MH, Isfahani AZ, Mohammadkhani A, Montazerozohori M (2004) Photooxidation of ethylbenzene with TiO2 and metal coated TiO2 and its kinetics. Monatsh Chem 135:1121–1127CrossRefGoogle Scholar
  18. Heremans P, Cheyns D, Rand BP (2009) Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res 42:1740–1747CrossRefGoogle Scholar
  19. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  20. Hou J, Wang Z, Kan W, Jiao S, Zhu H, Kumar RV (2012) Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core-shell composites coupled with graphene oxide nanosheets. J Mater Chem 22:7291–7299CrossRefGoogle Scholar
  21. Hou J, Yang C, Cheng H, Wang Z, Jiao S, Zhu H (2013) Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys Chem Chem Phys 15:15660–15668CrossRefGoogle Scholar
  22. Ide Y, Matsuoka M, Ogawa M (2010) Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J Am Chem Soc 132:16762–16764CrossRefGoogle Scholar
  23. Ide Y, Nakamura N, Hattori H, Ogino R, Ogawa M, Sadakane M, Sano T (2011) Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2 atmosphere. Chem Commun 47:11531–11533CrossRefGoogle Scholar
  24. Jeena V, Robinson RS (2012a) Convenient photooxidation of alcohols using dye sensitised semiconductors in combination with silver nitrate and TEMPO—an electron paramagnetic resonance study. Dalton Trans 41:3134–3137CrossRefGoogle Scholar
  25. Jeena V, Robinson RS (2012b) Convenient photooxidation of alcohols using dye sensitised zinc oxide in combination with silver nitrate and TEMPO. Chem Commun 48:299–301CrossRefGoogle Scholar
  26. Kakhki RM, Ahsani F, Mir N (2016) Enhanced photocatalytic activity of CuO-SiO2 nanocomposite based on a new Cu nanocomplex. J Mater Sci: Mater in Electron:1–9Google Scholar
  27. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300CrossRefGoogle Scholar
  28. Kamegawa T, Seto H, Matsuura S, Yamashita H (2012) Preparation of hydroxynaphthalene-modified TiO2 via formation of surface complexes and their applications in the photocatalytic reduction of nitrobenzene under visible-light irradiation. ACS Appl Mater Interfaces 4:6635–6639CrossRefGoogle Scholar
  29. Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. J Am Chem Soc 100:4317–4318CrossRefGoogle Scholar
  30. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  31. Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486CrossRefGoogle Scholar
  32. Lang X, Ma W, Zhao Y, Chen C, Ji H, Zhao J (2012) Visible-light-induced selective photocatalytic aerobic oxidation of amines into imines on TiO2. Chem—A Eur J 18:2624–2631Google Scholar
  33. Lee J, Choi W (2005) Photocatalytic reactivity of surface platinized TiO2: substrate specificity and the effect of Pt oxidation state. J Phys Chem B 109:7399–7406CrossRefGoogle Scholar
  34. Li B, Liu T, Wang Y, Wang Z (2012) ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J Colloid Interface Sci 377:114–121CrossRefGoogle Scholar
  35. Li GH, Gray KA (2007) The solid-solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem Phys 339:173–187CrossRefGoogle Scholar
  36. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279CrossRefGoogle Scholar
  37. Lin W-C, Lin Y-J (2011) Effect of vanadium(IV)-doping on the visible light-induced catalytic activity of titanium dioxide catalysts for methylene blue degradation. Environ Eng Sci 29:447–452CrossRefGoogle Scholar
  38. Litter MI, Navio JA (1996) Photocatalytic properties of iron-doped titania semiconductors. J Photochem Photobiol A: Chem 98:171–181CrossRefGoogle Scholar
  39. Ma Y, Zhang J, Tian B, Chen F, Wang L (2010) Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. J Hazard Mater 182:386–393CrossRefGoogle Scholar
  40. J-i Matsuo, Mukaiyama T (2001) N-tert-Butylbenzenesulfinimidoyl chloride. Encyclopedia of reagents for organic synthesis. Wiley, HobokenGoogle Scholar
  41. Mohamed OS, Gaber AE-AM, Abdel-Wahab AA (2002) Photocatalytic oxidation of selected aryl alcohols in acetonitrile. J Photochem Photobiol, A 148:205–210CrossRefGoogle Scholar
  42. Muoz MJL, Aguado J, Ruprez B (2007) The influence of dissolved transition metals on the photocatalytic degradation of phenol with TiO2. Res Chem Intermediat 33:377–392CrossRefGoogle Scholar
  43. Murahashi S-I (1995) Synthetic aspects of metal-catalyzed oxidations of amines and related reactions. Angew Chem, Int Ed Engl 34:2443–2465CrossRefGoogle Scholar
  44. Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madras G (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20:2900–2907CrossRefGoogle Scholar
  45. S-i Naya, Inoue A, Tada H (2010) Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant. J Am Chem Soc 132:6292–6293CrossRefGoogle Scholar
  46. S-i Naya, Kimura K, Tada H (2013) One-step Selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium(IV) oxide plasmon photocatalyst. ACS Catal 3:10–13CrossRefGoogle Scholar
  47. Nicolaou KC, Mathison CJN, Montagnon T (2003) New reactions of IBX: oxidation of nitrogen- and sulfur-containing substrates to afford useful synthetic intermediates. Angew Chem Int Ed 42:4077–4082CrossRefGoogle Scholar
  48. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A 265:115–121CrossRefGoogle Scholar
  49. Oppong SOB, Anku WW, Shukla SK, Govender PP (2016) Synthesis and characterisation of neodymium doped-zinc oxide—graphene oxide nanocomposite as a highly efficient photocatalyst for enhanced degradation of indigo carmine in water under simulated solar light. Res Chem Intermed: 1–21Google Scholar
  50. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007a) Photocatalysis: a promising route for twenty-first century organic chemistry. Chem Commun: 3425–3437Google Scholar
  51. Palmisano G, Yurdakal S, Augugliaro V, Loddo V, Palmisano L (2007b) Photocatalytic selective oxidation of 4-methoxybenzyl alcohol to aldehyde in aqueous suspension of home-prepared titanium dioxide catalyst. Adv Synth Catal 349:964–970CrossRefGoogle Scholar
  52. Palmisano L, Augugliaro V, Sclafani A, Schiavello M (1988) Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J Phy Chem 92:6710–6713CrossRefGoogle Scholar
  53. Pichat P, Mozzanega M-N, Courbon H (1987) Investigation of the mechanism of photocatalytic alcohol dehydrogenation over Pt/TiO2 using poisons and labelled ethanol. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 83:697–704CrossRefGoogle Scholar
  54. Pillai UR, Sahle-Demessie E (2002) Selective oxidation of alcohols in gas phase using light-activated titanium dioxide. J Catal 211:434–444CrossRefGoogle Scholar
  55. Qi L, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys Chem Chem Phys 13:8915–8923CrossRefGoogle Scholar
  56. Roy P, Periasamy AP, Liang C-T, Chang H-T (2013) Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene. Environ Sci Technol 47:6688–6695CrossRefGoogle Scholar
  57. Saravanan R, Mansoob Khan M, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126–133CrossRefGoogle Scholar
  58. Sarina S, Zhu H, Jaatinen E, Xiao Q, Liu H, Jia J, Chen C, Zhao J (2013) Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc 135:5793–5801CrossRefGoogle Scholar
  59. Selvam K, Swaminathan M (2007) A green chemical synthesis of 2-alkylbenzimidazoles from 1,2-phenylenediamine and propylene glycol, or alcohols mediated by Ag–TiO2/clay composite photocatalyst. Chem Lett 36:1060–1061CrossRefGoogle Scholar
  60. Selvam K, Swaminathan M (2011) An easy one-step photocatalytic synthesis of 1-aryl-2-alkylbenzimidazoles by platinum loaded TiO2 nanoparticles under UV and solar light. Tetrahedron Lett 52:3386–3392CrossRefGoogle Scholar
  61. Shchukin D, Poznyak S, Kulak A, Pichat P (2004) TiO2-In2O3 photocatalysts: preparation, characterisations and activity for 2-chlorophenol degradation in water. J Photochem Photobiol, A 162:423–430CrossRefGoogle Scholar
  62. Shen L, Liang S, Wu W, Lianga R, Wu L (2013) CdS-decorated UiO–66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J Mater Chem A 1:11473–11482CrossRefGoogle Scholar
  63. Sher Shah MSA, Park AR, Zhang K, Park JH, Yoo PJ (2012) Green synthesis of biphasic TiO2—reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces 4:3893–3901CrossRefGoogle Scholar
  64. Shifu C, Yunguang Y, Wei L (2011) Preparation, characterization and activity evaluation of TiN/F–TiO2 photocatalyst. J Hazard Mater 186:1560–1567CrossRefGoogle Scholar
  65. Shiraishi Y, Sugano Y, Tanaka S, Hirai T (2010) One-pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@TiO2 nanoparticles. Angew Chem Int Ed 49:1656–1660CrossRefGoogle Scholar
  66. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  67. Su R, Tiruvalam R, Logsdail AJ, He Q, Downing CA, Jensen MT, Dimitratos N, Kesavan L, Wells PP, Bechstein R et al. (2014) Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8:3490–3497Google Scholar
  68. Tanaka A, Hashimoto K, Kominami H (2011) Selective photocatalytic oxidation of aromatic alcohols to aldehydes in an aqueous suspension of gold nanoparticles supported on cerium(IV) oxide under irradiation of green light. Chem Commun 47:10446–10448CrossRefGoogle Scholar
  69. Tanaka A, Nishino Y, Sakaguchi S, Yoshikawa T, Imamura K, Hashimoto K, Kominami H (2013) Functionalization of plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. Chem Commun (Cambridge, United Kingdom) 49:2551–2553Google Scholar
  70. Tang J, Grampp G, Liu Y, Wang B-X, Tao F-F, Wang L-J, Liang X-Z, Xiao H-Q, Shen Y-M (2015) Visible light mediated cyclization of tertiary anilines with maleimides using nickel(II) oxide surface-modified titanium dioxide catalyst. J Org Chem 80:2724–2732CrossRefGoogle Scholar
  71. Tiana B, Li C, Gua F, Jianga H, Hua Y, Zhang J (2009) Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem Eng J 151:220–227CrossRefGoogle Scholar
  72. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315CrossRefGoogle Scholar
  73. Wang F, Li C, Chen H, Jiang R, Sun L-D, Li Q, Wang J, Yu JC, Yan C-H (2013) Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 135:5588–5601CrossRefGoogle Scholar
  74. Wang H, Partch RE, Li Y (1997) Synthesis of 2-alkylbenzimidazoles via TiO2-mediated photocatalysis. J Org Chem 62:5222–5225CrossRefGoogle Scholar
  75. Wang X, Liu G, Chen Z-G, Li F, Wang L, Lu GQ, Cheng H-M (2009) Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem Commun:3452–3454Google Scholar
  76. Wang X, Yin L, Liu G (2014) Light irradiation-assisted synthesis of ZnO-CdS/reduced graphene oxide heterostructured sheets for efficient photocatalytic H2 evolution. Chem Commun 50:3460–3463CrossRefGoogle Scholar
  77. Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phys Chem C 115:7355–7363CrossRefGoogle Scholar
  78. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796CrossRefGoogle Scholar
  79. Xing M-Y, Yang B-X, Yu H, Tian B-Z, Bagwasi S, Zhang J-L, Gong X-Q (2013) Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal (001) and (110) facets. J Phys Chem Lett 4:3910–3917CrossRefGoogle Scholar
  80. Xiong T, Dong F, Zhou Y, Fu M, Ho W-K (2015) New insights into how RGO influences the photocatalytic performance of BiOIO3/RGO nanocomposites under visible and UV irradiation. J Colloid Interface Sci 447:16–24CrossRefGoogle Scholar
  81. Xue M, Huang L, Wang J-Q, Wang Y, Gao L, J-h Zhu, Zou Z-G (2008) The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size. Nanotechnology 19:185604CrossRefGoogle Scholar
  82. Yamashita H, Ichihashi Y, Takeuchi M, Kishiguchi S, Anpo M (1999) Characterization of metal ionimplanted titanium oxide photocatalysts operating under visible light irradiation. Radiat J Synchroton 6:451–452CrossRefGoogle Scholar
  83. Yang M-Q, Zhang N, Pagliaro M, Xu Y-J (2014) Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem Soc Rev 43:8240–8254CrossRefGoogle Scholar
  84. Yao Y, Li G, Ciston S, Lueptow RM, Gray KA (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42:4952–4957CrossRefGoogle Scholar
  85. Yu C, Fan C, Meng X, Yang K, Cao F, Li X (2011) A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes. React Kinet, Mech Catal 103:141–151CrossRefGoogle Scholar
  86. Yu C, Fan Q, Xie Y, Chen J, shu Q, Yu JC (2012a) Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol. J Hazard Mater 237–238:38–45CrossRefGoogle Scholar
  87. Yu C, Li G, Kumar S, Yang K, Jin R (2014) Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv Mater 26:892–898CrossRefGoogle Scholar
  88. Yu C, Yang K, Zhou WQ, Fan QZ, Wei LF, Yu JC (2013a) Preparation, characterization and photocatalytic performance of noble metals (Ag, Pd, Pt, Rh) deposited on sponge-like ZnO microcuboids. J Phys Chem Solids 74:1714–1720CrossRefGoogle Scholar
  89. Yu C, Yu JC (2009) A simple way to prepare C-N-codoped TiO2 photocatalyst with visible-light activity. Catal Lett 129:462–470CrossRefGoogle Scholar
  90. Yu C, Yu JC, Fan C, Wen H, Hu S (2010) Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation. Mater Sci Eng, B 166:213–219CrossRefGoogle Scholar
  91. Yu J, Wang S, Low J, Xiao W (2013b) Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15:16883–16890CrossRefGoogle Scholar
  92. Yu J, Xiong J, Cheng B, Liu S (2005) Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B 60:211–221CrossRefGoogle Scholar
  93. Yu J, Yang B, Cheng B (2012b) Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance. Nanoscale 4:2670–2677CrossRefGoogle Scholar
  94. Yu J, Yue L, Liu S, Huang B, Zhang X (2009) Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres. J Colloid Interface Sci 334:58–64CrossRefGoogle Scholar
  95. Yu Y, Ren J, Meng M (2013c) Photocatalytic hydrogen evolution on graphene quantum dots anchored TiO2 nanotubes-array. Int J Hydrogen Energy 38:12266–12272CrossRefGoogle Scholar
  96. Yurdakal S, Palmisano G, Loddo V, Augugliaro V, Palmisano L (2008) Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. J Am Chem Soc 130:1568–1569CrossRefGoogle Scholar
  97. Zavahir S, Zhu H (2015) Visible light induced green transformation of primary amines to imines using a silicate supported anatase photocatalyst. Molecules 20:1941–1954CrossRefGoogle Scholar
  98. Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52CrossRefGoogle Scholar
  99. Zhang J, Xu Q, Feng Z, Li M, Li C (2008a) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed 47:1766–1769CrossRefGoogle Scholar
  100. Zhang M, Chen C, Ma W, Zhao J (2008b) Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. Angew Chem 120:9876–9879CrossRefGoogle Scholar
  101. Zhao J, Zheng Z, Bottle S, Chou A, Sarina S, Zhu H (2013) Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature. Chem Commun 49:2676–2678CrossRefGoogle Scholar
  102. Zhao Y, Liu J, Shi L, Yuan S, Fang J, Wang Z, Zhang M (2011) Solvothermal preparation of Sn4+ doped anatase TiO2 nanocrystals from peroxo-metal-complex and their photocatalytic activity. Appl Catal B 103:436–443CrossRefGoogle Scholar
  103. Zhao Z-G, Miyauchi M (2008) Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem, Int Ed Engl 47:7051–7055CrossRefGoogle Scholar
  104. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Whangbo M-H (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 21:9079–9087CrossRefGoogle Scholar
  105. Zhu C, Xia J-B, Chen C (2014) Vanadium-catalyzed oxidative Strecker reaction: α-C–H cyanation of para-methoxyphenyl (PMP)-protected primary amines. Tetrahedron Lett 55:232–234CrossRefGoogle Scholar
  106. Zhu J, Yang D, Geng J, Chen D, Jiang Z (2008) Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity. J Nanopart Res 10:729–736CrossRefGoogle Scholar
  107. Zhu J, Zheng W, He B, Zhang J, Anpo M (2004) Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A: Chem 216:35–43CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hossam Eldin Abdel Fattah Ahmed Hamed El Nazer
    • 1
    Email author
  • Samir Tawfik Gaballah
    • 1
  1. 1.Chemical Industries Research Division, Photochemistry DepartmentNational Research CentreGizaEgypt

Personalised recommendations