Advertisement

Basic Principles, Mechanism, and Challenges of Photocatalysis

  • R. SaravananEmail author
  • Francisco Gracia
  • A. Stephen
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Photocatalyst is a gifted method which can be used for various purposes like degradation of various organic pollutants in wastewater, production of hydrogen, purification of air, and antibacterial activity. When compared with other methods, photocatalysis is rapidly growing and gaining more attention from the researchers due to its several advantages such as low cost and attractive efficiency. Photocatalysis is a unique process for rectifying energy and environmental issues. In this connection, this chapter deals with basic principles, classification, mechanism, limitations, and operating parameters of photocatalytic processes. Furthermore, the most efficient photocatalytic materials, its mechanism, its challenges, and their solution of rectification were discussed in detail.

Keywords

Photocatalyst Mechanism Semiconductors Oxidation Reduction 

References

  1. Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. J Photochem Photobiol A 137(1):63–69CrossRefGoogle Scholar
  2. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170(2–3):520–529CrossRefGoogle Scholar
  3. Ansari MO, Khan MM, Ansari SA, Cho MH (2015) Electrically conductive polyaniline sensitized defective-TiO2 for improved visible light photocatalytic and photoelectrochemical performance: a synergistic effect. New J Chem 39(11):8381–8388CrossRefGoogle Scholar
  4. Castillo-Ledezma JH, Sánchez Salas JL, López-Malo A, Bandala ER (2011) Effect of pH, solar irradiation, and semiconductor concentration on the photocatalytic disinfection of Escherichia coli in water using nitrogen-doped TiO2. Eur Food Res Technol 233(5):825–834CrossRefGoogle Scholar
  5. Cernuto G, Masciocchi N, Cervellino A, Colonna GM, Guagliardi A (2011) Size and shape dependence of the photocatalytic activity of TiO2 nanocrystals: a total scattering Debye function study. J Am Chem Soc 133(9):3114–3119CrossRefGoogle Scholar
  6. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C 6(2–3):186–205CrossRefGoogle Scholar
  7. Choi YI, Lee S, Kim SK, Kim Y, Cho DW, Khan MM, Sohn Y (2016) Fabrication of ZnO, ZnS, Ag-ZnS, and Au-ZnS microspheres for photocatalytic activities, CO oxidation and 2-hydroxyterephthalic acid synthesis. J Alloy Compd 675:46–56CrossRefGoogle Scholar
  8. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027CrossRefGoogle Scholar
  9. Coleman HM, Eggins BR, Byrne J, Palmer FL, King E (2000) Photocatalytic degradation of 17-β-oestradiol on immobilised TiO2. Appl Catal B 24(1):L1–L5CrossRefGoogle Scholar
  10. Cun W, Jincai Z, Xinming W, Bixian M, Guoying S, Ping’an P, Jiamo F (2002) Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Appl Catal B 39(3):269–279CrossRefGoogle Scholar
  11. Ekambaram S, Iikubo Y, Kudo A (2007) Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO. J Alloy Compd 433(1–2):237–240CrossRefGoogle Scholar
  12. Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149(3):631–642CrossRefGoogle Scholar
  13. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357CrossRefGoogle Scholar
  14. Freeman H, Harten T, Springer J, Randall P, Curran MA, Stone K (1992) Industrial pollution prevention!: a critical review. J Air Waste Manage Assoc 42(5):618–656CrossRefGoogle Scholar
  15. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  16. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21CrossRefGoogle Scholar
  17. Gnanasekaran L, Hemamalini R, Ravichandran K (2015) Synthesis and characterization of TiO2 quantum dots for photocatalytic application. J Saudi Chem Soc 19(5):589–594CrossRefGoogle Scholar
  18. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8(3–4):553–597CrossRefGoogle Scholar
  19. Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2(16):6380CrossRefGoogle Scholar
  20. Hagen J (2006) Industrial catalysis: a practical approach/Jens Hagen, 2nd edn. Wiley, WeinheimGoogle Scholar
  21. Han G, Wang L, Pei C, Shi R, Liu B, Zhao H, Yang H, Liu S (2014) Size-dependent optical properties and enhanced visible light photocatalytic activity of wurtzite CdSe hexagonal nanoflakes with dominant 001 facets. J Alloy Compd 610:62–68CrossRefGoogle Scholar
  22. In S, Orlov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129(45):13790–13791CrossRefGoogle Scholar
  23. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production—a literature review. J Clean Prod 42:228–240CrossRefGoogle Scholar
  24. Johnson MB, Mehrvar M (2008) Aqueous metronidazole degradation by UV/H2O2 process in single-and multi-lamp tubular photoreactors: kinetics and reactor design. Ind Eng Chem Res 47(17):6525–6537CrossRefGoogle Scholar
  25. Kanade KG, Kale BB, Baeg JO, Lee SM, Lee CW, Moon SJ, Chang H (2007) Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Mater Chem Phys 102:98–104CrossRefGoogle Scholar
  26. Kazeminezhad I, Sadollahkhani A (2016) Influence of pH on the photocatalytic activity of ZnO nanoparticles. J Mater Sci Mater Electron 27(5):4206–4215CrossRefGoogle Scholar
  27. Khan ME, Khan MM, Cho MH (2015a) Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J Chem 39(10):8121–8129CrossRefGoogle Scholar
  28. Khan MM, Adil SF, Al-Mayouf A (2015b) Metal oxides as photocatalysts. J Saudi Chem Soc 19(5):462–464CrossRefGoogle Scholar
  29. Khan MM, Ansari SA, Amal MI, Lee J, Cho MH (2013) Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale 5(10):4427–4435CrossRefGoogle Scholar
  30. Khan MM, Ansari SA, Ansari MO, Min BK, Lee J, Cho MH (2014a) Biogenic fabrication of Au@CeO2 nanocomposite with enhanced visible light activity. J Phys Chem C 118(18):9477–9484CrossRefGoogle Scholar
  31. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014b) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2(3):637–644CrossRefGoogle Scholar
  32. Khan MM, Ansari SA, Pradhan D, Han DH, Lee J, Cho MH (2014c) Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind Eng Chem Res 53(23):9754–9763CrossRefGoogle Scholar
  33. Khan MM, Lee J, Cho MH (2014d) Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J Ind Eng Chem 20(4):1584–1590CrossRefGoogle Scholar
  34. Khoa NT, Kim SW, Yoo D, Cho S, Kim EJ, Hahn SH (2015) Fabrication of Au/graphene-wrapped ZnO-nanoparticle-assembled hollow spheres with effective photoinduced charge transfer for photocatalysis. ACS Appl Mater Interfaces 7(6):3524–3531CrossRefGoogle Scholar
  35. Kiriakidou F, Kondarides DI, Verykios XE (1999) The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catal Today 54:119–130CrossRefGoogle Scholar
  36. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl Catal B 49(1):1–14CrossRefGoogle Scholar
  37. Ling Q, Sun J, Zhou Q (2008) Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitrogen. Appl Surf Sci 254(10):3236–3241CrossRefGoogle Scholar
  38. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, Rudan I, Campbell H, Cibulskis R, Li M, Mathers C, Black RE (2012) Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. The Lancet 379(9832):2151–2161CrossRefGoogle Scholar
  39. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59CrossRefGoogle Scholar
  40. Milenova K, Avramova I, Eliyas A, Blaskov V, Stambolova I, Kassabova N (2014) Application of activated M/ZnO (M = Mn Co, Ni, Cu, Ag) in photocatalytic degradation of diazo textile coloring dye. Environ Sci Pollut Res Int 21(21):12249–12256CrossRefGoogle Scholar
  41. Moon J, Yun CY, Chung K, Kang M, Yi J (2003) Photocatalytic activation of TiO2 under visible light using Acid Red 44. Catal Today 87(1–4):77–86CrossRefGoogle Scholar
  42. Moo-Young HK (2007) Pulp and paper effluent management. Water Environ Res 79(10):1733–1741CrossRefGoogle Scholar
  43. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189CrossRefGoogle Scholar
  44. Neppolian B, Choi HS, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46:1173–1181CrossRefGoogle Scholar
  45. Oller I, Malato S, Sanchez-Perez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166CrossRefGoogle Scholar
  46. Pagga U, Brown D (1986) The degradation of dyestuffs: part II behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15(4):479–491CrossRefGoogle Scholar
  47. Parida KM, Parija S (2006) Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Sol Energy 80(8):1048–1054CrossRefGoogle Scholar
  48. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne J, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349CrossRefGoogle Scholar
  49. Qiu R, Zhang D, Mo Y, Song L, Brewer E, Huang X, Xiong Y (2008) Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J Hazard Mater 156(1–3):80–85CrossRefGoogle Scholar
  50. Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni M, Kajitvichyanukul P, Krishnan-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C 9(4):171–192CrossRefGoogle Scholar
  51. Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170(2–3):560–569CrossRefGoogle Scholar
  52. Reza KM, Kurny AS, Gulshan F (2015) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci. doi: 10.1007/s13201-015-0367-y Google Scholar
  53. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed Engl 42(40):4908–4911CrossRefGoogle Scholar
  54. Saravanan R, Gracia F, Khan MM, Poornima V, Gupta VK, Narayanan V, Stephen A (2015) ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. J Mol Liq 209:374–380CrossRefGoogle Scholar
  55. Saravanan R, Gupta VK, Narayanan V, Stephen A (2013a) Comparative study on photocatalytic activity of ZnO prepared by different methods. J Mol Liq 181:133–141CrossRefGoogle Scholar
  56. Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013b) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C Mater Biol Appl 33(1):91–98CrossRefGoogle Scholar
  57. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033CrossRefGoogle Scholar
  58. Saravanan R, SHANKAR H, Prakash T, Narayanan V, Stephen A (2011a) ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater Chem Phys 125(1–2):277–280CrossRefGoogle Scholar
  59. Saravanan R, Shankar H, Rajasudha G, Stephen A, Narayanan V (2011b) Photocatalytic degradation of organic dye using nano ZnO. Int J Nanosci 10(01–02):253–257CrossRefGoogle Scholar
  60. Saravanan R, Thirumal E, Gupta VK, Narayanan V, Stephen A (2013c) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol Liq 177:394–401CrossRefGoogle Scholar
  61. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986CrossRefGoogle Scholar
  62. Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35(1):109–136CrossRefGoogle Scholar
  63. Serpone N, Horikoshi S, Emeline AV (2010) Microwaves in advanced oxidation processes for environmental applications. A brief review. J Photochem Photobiol C 11(2–3):114–131CrossRefGoogle Scholar
  64. Shifu C, Wei Z, Sujuan Z, Wei L (2009) Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chem Eng J 148(2–3):263–269CrossRefGoogle Scholar
  65. Song L, Qiu R, Mo Y, Zhang D, Wei H, Xiong Y (2007) Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. Catal Commun 8(3):429–433CrossRefGoogle Scholar
  66. Wang H, Xie C, Zhang W, Cai S, Yang Z, Gui Y (2007) Comparison of dye degradation efficiency using ZnO powders with various size scales. J Hazard Mater 141(3):645–652CrossRefGoogle Scholar
  67. Wang Y, Li X, Lu G, Chen G, Chen Y (2008) Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology. Mater Lett 62(15):2359–2362CrossRefGoogle Scholar
  68. Wei F, Ni L, Cui P (2008) Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. J Hazard Mater 156(1–3):135–140Google Scholar
  69. Xiao Q, Zhang J, Xiao C, Tan X (2007) Photocatalytic decolorization of methylene blue over Zn1−xCoxO under visible light irradiation. Mater Sci Eng B 142(2–3):121–125CrossRefGoogle Scholar
  70. Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M (2002) Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photochem Photobiol A 148(1–3):257–261CrossRefGoogle Scholar
  71. Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2):128–142CrossRefGoogle Scholar
  72. Zhang L, Yang H, Xie X, Zhang F, Li L (2009) Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening. J Alloy Compd 473(1–2):65–70Google Scholar
  73. Zhou H, Qu Y, Zeid T, Duan X (2012) Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ Sci 5(5):6732CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Chemical Engineering and BiotechnologyUniversity of ChileSantiagoChile
  2. 2.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations