Advertisement

Novel Applications and Future Perspectives of Nanocomposites

  • Zsolt Kása
  • Tamás Gyulavári
  • Gábor Veréb
  • Gábor Kovács
  • Lucian Baia
  • Zsolt PapEmail author
  • Klára HernádiEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

As the present chapter of the book is located in the concluding section, it was important to highlight the main applications of composite materials focusing especially on applications, which exploit other peculiarities of the materials besides photocatalysis. This will be done, by introducing those materials and their composites that are most studied, or were found to exhibit interesting behavior. In many of the presented cases, the main structural, morphological, or optical property of the given composite will be discussed to understand its functioning mechanism, and its role in the current scientific approaches. Additionally, this chapter aims to give a perspective regarding the composite-based nanoscience, and points out important research directions for the further developments of composite materials.

Keywords

Photocatalysis Application spectrum Nanocomposites Semiconductors Metals Doping Mixed oxides 

References

  1. Abdullah H, Naim NM, Hamid AA, Umar AA (2016) Characterization and fabrication of nanocomposite thin films of PANI embedded with Ag-Mn alloy for E. coli sensor. Mater Today: Proc 3:538–544CrossRefGoogle Scholar
  2. Achouri F, Corbel S, Aboulaich A, Balan L, Ghrabi A, Ben Said M, Schneider R (2014) Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J Phys Chem Solids 75:1081–1087CrossRefGoogle Scholar
  3. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1–13CrossRefGoogle Scholar
  4. Akbayrak S, Tanyıldızı S, Morkan İ, Özkar S (2014) Ruthenium(0) nanoparticles supported on nanotitania as highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. Int J Hydrogen Energy 39:9628–9637CrossRefGoogle Scholar
  5. Al-Dossary M, Ismail AA, Fierro JLG, Bouzid H, Al-Sayari SA (2015) Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction. Appl Catal B 165:651–660CrossRefGoogle Scholar
  6. Aly IHM, Abed Alrahim Mohammed L, Al-Meer S, Elsaid K, NaM Barakat (2016) Preparation and characterization of wollastonite/titanium oxide nanofiber bioceramic composite as a future implant material. Ceram Int 42:11525–11534CrossRefGoogle Scholar
  7. Anku WW, Oppong SO-B, Shukla SK, Agorku ES, Govender PP (2016) Palladium-doped–ZrO2–multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment. Appl Phys A 122Google Scholar
  8. Antoniou MG, Dionysiou DD (2007) Application of immobilized titanium dioxide photocatalysts for the degradation of creatinine and phenol, model organic contaminants found in NASA’s spacecrafts wastewater streams. Catal Today 124:215–223CrossRefGoogle Scholar
  9. Aravind SSJ, Costa M, Pereira V, Mugweru A, Ramanujachary K, Vaden TD (2014) Molybdenum/graphene—based catalyst for hydrogen evolution reaction synthesized by a rapid photothermal method. Int J Hydrogen Energy 39:11528–11536CrossRefGoogle Scholar
  10. Arco LGD, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873CrossRefGoogle Scholar
  11. Arivuoli D, Gnanam FD, Ramasamy P (1988) Growth and microhardness studies of chalcogneides of arsenic, antimony and bismuth. J Mater Sci Lett 7:711–713CrossRefGoogle Scholar
  12. Arunraja L, Thirumoorthy P, Karthik A, Rajendran V, Edwinpaul L (2016) EDTA-decorated nanostructured ZnO/CdS thin films for oxygen gas sensing applications. J Electron Mater 45:4100–4107CrossRefGoogle Scholar
  13. Asai R, Nemoto H, Jia Q, Saito K, Iwase A, Kudo A (2014) A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting. Chem Commun (Camb) 50:2543–2546CrossRefGoogle Scholar
  14. Asim N, Radiman S, Yarmo MA, Banaye Golriz MS (2009) Vanadium pentoxide: Synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution. Microporous Mesoporous Mater 120:397–401CrossRefGoogle Scholar
  15. Avansi W Jr, Ribeiro C, Leite ER, Mastelaro VR (2010) Growth kinetics of vanadium pentoxide nanostructures under hydrothermal conditions. J Cryst Growth 312:3555–3559CrossRefGoogle Scholar
  16. Bahnemann W, Muneer M, Haque MM (2007) Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal Today 124:133–148CrossRefGoogle Scholar
  17. Bai S, Wang L, Chen X, Du J, Xiong Y (2015) Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Research 8:175–183CrossRefGoogle Scholar
  18. Banerjee S, Gopal J, Muraleedharan P, Tyagi AK, Raj B (2006) Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy. Res Commun 90:1378–1383Google Scholar
  19. Bhunia R, Das S, Dalui S, Hussain S, Paul R, Bhar R, Pal AK (2016) Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester. Appl Phys A 122:1–13CrossRefGoogle Scholar
  20. Biswal N, Das DP, Martha S, Parida KM (2011) Efficient hydrogen production by composite photocatalyst CdS–ZnS/Zirconium–titanium phosphate (ZTP) under visible light illumination. Int J Hydrogen Energy 36:13452–13460CrossRefGoogle Scholar
  21. Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2:23–30CrossRefGoogle Scholar
  22. Can MM, Coşkun M, Fırat T (2012) A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. J Alloy Compd 542:241–247CrossRefGoogle Scholar
  23. Cao S, Liu T, Hussain S, Zeng W, Peng X, Pan F (2015) Hydrothermal synthesis, characterization and optical absorption property of nanoscale WS2/TiO2 composites. Physica E 68:171–175CrossRefGoogle Scholar
  24. Carević MV, Abazović ND, Novaković TB, Pavlović VB, Čomor MI (2016) Zirconium dioxide nanopowders with incorporated Si4 + ions as efficient photocatalyst for degradation of trichlorophenol using simulated solar light. Appl Catal B 195:112–120CrossRefGoogle Scholar
  25. Chandra S, Bag S, Bhar R, Pramanik P (2010) Sonochemical synthesis and application of rhodium–graphene nanocomposite. J Nanopart Res 13:2769–2777CrossRefGoogle Scholar
  26. Chang C, Fu Y, Hu M, Wang C, Shan G, Zhu L (2013) Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl Catal B 142–143:553–560CrossRefGoogle Scholar
  27. Chen L, Wang J, Meng D, Xing Y, Tian X, Yu X, Xu K, Wu X (2015) Effects of citric acid and urea on the structural and morphological characteristics of BiVO4 synthesized by the sol–gel combustion method. J Sol-Gel Sci Technol 76:562–571CrossRefGoogle Scholar
  28. Chew LM, Ruland H, Schulte HJ, Xia W, Muhler M (2014) CO2 hydrogenation to hydrocarbons over iron nanoparticles supported on oxygen-functionalized carbon nanotubes. J Chem Sci 126:481–486CrossRefGoogle Scholar
  29. Chiou YD, Hsu YJ (2011) Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Appl Catal B 105:211–219CrossRefGoogle Scholar
  30. Cho Y, Choi W, Lee C-H, Hyeon T, Lee H-I (2001) Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol 35:966–970CrossRefGoogle Scholar
  31. Choi H, Stathatos E, Dionysiou DD (2006) Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B 63:60–67CrossRefGoogle Scholar
  32. Christoforidis KC, Montini T, Bontempi E, Zafeiratos S, Jaén JJD, Fornasiero P (2016) Synthesis and photocatalytic application of visible-light active β-Fe2O3/g-C3N4 hybrid nanocomposites. Appl Catal B 187:171–180CrossRefGoogle Scholar
  33. Cong Y, Chen M, Xu T, Zhang Y, Wang Q (2014) Tantalum and aluminum co-doped iron oxide as a robust photocatalyst for water oxidation. Appl Catal B 147:733–740CrossRefGoogle Scholar
  34. Cozzi D, De Bonis C, D’epifanio A, Mecheri B, Tavares AC, Licoccia S (2014) Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J Power Sour 248:1127–1132Google Scholar
  35. Cudennec Y, Lecerf A (2005) Topotactic transformations of goethite and lepidocrocite into hematite and maghemite. Solid State Sci 7:520–529CrossRefGoogle Scholar
  36. Cui G, Wang W, Ma M, Xie J, Shi X, Deng N, Xin J, Tang B (2015) IR-driven photocatalytic water splitting with WO2–NaxWO3 hybrid conductor material. Nano Lett 15:7199–7203CrossRefGoogle Scholar
  37. Dai Prè M, Morrow I, Martin DJ, Mos M, Del Negro A, Padovani S, Martucci A (2013) Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency. Mater Chem Phys 139:531–536CrossRefGoogle Scholar
  38. Deshmane VG, Adewuyi YG (2012) Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): Effects of different process parameters. Microporous Mesoporous Mater 148:88–100CrossRefGoogle Scholar
  39. Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29CrossRefGoogle Scholar
  40. Dolinska J, Chidambaram A, Taleat Z, Adamkiewicz W, Lisowski W, Palys B, Holdynski M, Andryszewski T, Sashuk V, Rassaei L, Opallo M (2015) Decoration of MoS2 nanopetal stacks with positively charged gold nanoparticles for synergistic electrocatalytic oxidation of biologically relevant compounds. Electrochim Acta 182:659–667CrossRefGoogle Scholar
  41. Domen K, Kudo A, Tanaka A, Onishi T (1990a) Overall photodecomposition of water on a layered niobiate catalyst. Catal Today 8:77–84CrossRefGoogle Scholar
  42. Domen K, Yoshimura J, Sekine T, Tanaka A, Onishi T (1990b) A novel series of photocatalysts with an ion-exchangeable layered structure of niobate. Catal Lett 4:339–343CrossRefGoogle Scholar
  43. Dong G, Zhang Y, Pan Q, Qiu J (2014) A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J Photochem Photobiol, C 20:33–50CrossRefGoogle Scholar
  44. Dorner RW, Hardy DR, Williams FW, Willauer HD (2010) K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst’s active phase. Appl Catal A 373:112–121CrossRefGoogle Scholar
  45. Egerton TA, Mattinson JA (2008) The influence of platinum on UV and ‘visible’ photocatalysis by rutile and Degussa P25. J Photochem Photobiol, A 194:283–289CrossRefGoogle Scholar
  46. Fan X, Gao J, Wang Y, Li Z, Zou Z (2010) Effect of crystal growth on mesoporous Pb3Nb4O 13 formation, and their photocatalytic activity under visible-light irradiation. J Mater Chem 20:2865–2869CrossRefGoogle Scholar
  47. Fan X, Zang L, Zhang M, Qiu H, Wang Z, Yin J, Jia H, Pan S, Wang C (2014) A bulk boron-based photocatalyst for efficient dechlorination: K 3B6O10Br. Chem Mater 26:3169–3174CrossRefGoogle Scholar
  48. Fan L, Zhang S, Zhang X, Zhou H, Lu Z, Wang S (2015) Removal of arsenic from simulation wastewater using nano-iron/oyster shell composites. J Environ Manage 156:109–114CrossRefGoogle Scholar
  49. Fan G, Liu Q, Tang D, Li X, Bi J, Gao D (2016) Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane. Int J Hydrogen Energy 41:1542–1549CrossRefGoogle Scholar
  50. Fang X, Guo X, Mao Y, Hua C, Shen L, Hu Y, Wang Z, Wu F, Chen L (2012) Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium–sulfur batteries. Chem—An Asian J 7:1013–1017Google Scholar
  51. Fang M, Jia H, He W, Lei Y, Zhang L, Zheng Z (2015) Construction of flexible photoelectrochemical solar cells based on ordered nanostructural BiOI/Bi2S3 heterojunction films. Phys Chem Chem Phys 17:13531–13538CrossRefGoogle Scholar
  52. Fang LJ, Wang XL, Li YH, Liu PF, Wang YL, Zeng HD, Yang HG (2017) Nickel nanoparticles coated with graphene layers as efficient co-catalyst for photocatalytic hydrogen evolution. Appl Catal B 200:578–584CrossRefGoogle Scholar
  53. Fernández-Ibáñez P, Polo-López MI, Malato S, Wadhwa S, Hamilton JWJ, Dunlop PSM, D’sa R, Magee E, O’shea K, Dionysiou DD, Byrne JA (2015) Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J 261:36–44Google Scholar
  54. Fihri A, Artero V, Pereira A, Fontecave M (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium—and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans 5567–5569Google Scholar
  55. Fu Y, Sun X, Wang X (2011) BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater Chem Phys 131:325–330CrossRefGoogle Scholar
  56. Gao Z, Liu N, Wu D, Tao W, Xu F, Jiang K (2012) Graphene–CdS composite, synthesis and enhanced photocatalytic activity. Appl Surf Sci 258:2473–2478CrossRefGoogle Scholar
  57. Gar Alalm M, Tawfik A, Ookawara S (2016) Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J Environ Chem Eng 4:1929–1937CrossRefGoogle Scholar
  58. Ge L, Han C, Liu J (2011) Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of MO. Appl Catal B 108–109:100–107CrossRefGoogle Scholar
  59. Gou W, Wu P, Jiang D, Ma X (2015) Synthesis of AgBr@Bi2O3 composite with enhanced photocatalytic performance under visible light. J Alloy Compd 646:437–445CrossRefGoogle Scholar
  60. Goudarzi M, Salavati-Niasari M (2016) Controllable synthesis of new Tl2S2O3 nanostructures via hydrothermal process; Characterization and investigation photocatalytic activity for degradation of some anionic dyes. J Mol Liq 219:851–857CrossRefGoogle Scholar
  61. Goudarzi M, Salavati-Niasari M, Hosseinpour-Mashkani SM, Mir N (2015) Controlled synthesis of Tl2O3 nanostructures via microwave route by a novel pH adjuster and investigation of its photocatalytic activity. J Mater Sci: Mater Electron 26:5326–5334Google Scholar
  62. Gumy D, Rincon A, Hajdu R, Pulgarin C (2006) Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed TiO2 catalysts study. Sol Energy 80:1376–1381CrossRefGoogle Scholar
  63. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  64. Han Q, Sun S, Sun D, Zhu J, Wang X (2011a) Room-temperature synthesis from molecular precursors and photocatalytic activities of ultralong Sb2S3 nanowires. RSC Advances 1:1364–1369CrossRefGoogle Scholar
  65. Han Y, Wu X, Ma Y, Gong L, Qu F, Fan H (2011b) Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm 13:3506–3510CrossRefGoogle Scholar
  66. Hanbicki AT, Currie M, Kioseoglou G, Friedman AL, Jonker BT (2015) Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun 203:16–20CrossRefGoogle Scholar
  67. Hassanzadeh-Tabrizi SA, Motlagh MM, Salahshour S (2016) Synthesis of ZnO/CuO nanocomposite immobilized on γ-Al2O3 and application for removal of MO. Appl Surf Sci 384:237–243CrossRefGoogle Scholar
  68. Haw CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN (2010) Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram Int 36:1417–1422CrossRefGoogle Scholar
  69. Hayat K, Gondal MA, Khaled MM, Ahmed S (2011) Effect of operational key parameters on photocatalytic degradation of phenol using nano nickel oxide synthesized by sol–gel method. J Mol Catal A: Chem 336:64–71CrossRefGoogle Scholar
  70. He Y, Sheng T, Chen J, Fu R, Hu S, Wu X (2009) Photodegradation of organics over a new composite catalyst V2O5/SmVO4. Catal Commun 10:1354–1357CrossRefGoogle Scholar
  71. He G-H, Liang C-J, Ou Y-D, Liu D-N, Fang Y-P, Xu Y-H (2013) Preparation of novel Sb2O3/WO3 photocatalysts and their activities under visible light irradiation. Mater Res Bull 48:2244–2249CrossRefGoogle Scholar
  72. Herrmann J-M, Matos J, Disdier J, Guillard C, Laine J, Malato S, Blanco J (1999) Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catal Today 54:255–265CrossRefGoogle Scholar
  73. Hintsho N, Petrik L, Nechaev A, Titinchi S, Ndungu P (2014) Photo-catalytic activity of titanium dioxide carbon nanotube nano-composites modified with silver and palladium nanoparticles. Appl Catal B 156–157:273–283CrossRefGoogle Scholar
  74. Hirai T, Bando Y, Komasawa I (2002) Immobilization of CdS nanoparticles formed in reverse micelles onto alumina particles and their photocatalytic properties. J Phys Chem B 106:8967–8970CrossRefGoogle Scholar
  75. Hou Y, Wang X, Wu L, Ding Z, Fu X (2006) Efficient decomposition of benzene over a β-Ga2O 3 photocatalyst under ambient conditions. Environ Sci Technol 40:5799–5803CrossRefGoogle Scholar
  76. Hou Y, Wu L, Wang X, Ding Z, Li Z, Fu X (2007) Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air. J Catal 250:12–18CrossRefGoogle Scholar
  77. Hsieh S-H, Lee G-J, Chen C-Y, Chen J-H, Ma S-H, Horng T-L, Chen K-H, Wu JJ (2013) Hydrothermal synthesis of mesoporous Bi2O3/Co3O4 microsphere and photocatalytic degradation of orange II Dyes by visible light. Top Catal 56:623–629CrossRefGoogle Scholar
  78. Hsu Y-K, Chen Y-C, Lin Y-G (2015) Novel ZnO/Fe2O3 core–shell nanowires for photoelectrochemical water splitting. ACS Appl Mater Interfaces 7:14157–14162CrossRefGoogle Scholar
  79. Hu KH, Liu Z, Huang F, Hu XG, Han CL (2010) Synthesis and photocatalytic properties of nano-MoS2/kaolin composite. Chem Eng J 162:836–843CrossRefGoogle Scholar
  80. Hu K-H, Zhao D-F, Liu J-S (2012) Synthesis of nano-MoS2/bentonite composite and its application for removal of organic dye. Trans Nonferrous Metals Soc China 22:2484–2490CrossRefGoogle Scholar
  81. Hu S, Ma L, You J, Li F, Fan Z, Wang F, Liu D, Gui J (2014) A simple and efficient method to prepare a phosphorus modified g-C 3N4 visible light photocatalyst. RSC Adv 4:21657–21663CrossRefGoogle Scholar
  82. Hu SW, Yang LW, Tian Y, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity. Appl Catal B 163:611–622CrossRefGoogle Scholar
  83. Hu D, Diao P, Xu D, Wu Q (2016) Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting. Nano Res 9:1735–1751CrossRefGoogle Scholar
  84. Huang J, Ding K, Hou Y, Wang X, Fu X (2008) Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water. Chemsuschem 1:1011–1019CrossRefGoogle Scholar
  85. Huang K-J, Liu Y-J, Wang H-B, Gan T, Liu Y-M, Wang L-L (2014) Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide–graphene composites and gold nanoparticles. Sens Actuators B: Chem 191:828–836CrossRefGoogle Scholar
  86. Hung CM (2009) Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst. J Hazard Mater 163:180–186CrossRefGoogle Scholar
  87. Huo J, Zeng H (2016) Silver nanoparticles-sensitized cobalt complex for highly-efficient photocatalytic activity. Appl Catal B 199:342–349CrossRefGoogle Scholar
  88. Hwang JY, El-Kady MF, Wang Y, Wang L, Shao Y, Marsh K, Ko JM, Kaner RB (2015) Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18:57–70CrossRefGoogle Scholar
  89. Jansson I, Yoshiiri K, Hori H, García-García FJ, Rojas S, Sánchez B, Ohtani B, Suárez S (2016) Visible light responsive Zeolite/WO3–Pt hybrid photocatalysts for degradation of pollutants in air. Appl Catal A 521:208–219CrossRefGoogle Scholar
  90. Jasso-Salcedo AB, Meimaroglou D, Hoppe S, Pla F, Escobar-Barrios VA (2016) Surface modification and immobilization in poly(acrylic acid) of Ag/ZnO for photocatalytic degradation of endocrine-disrupting compounds. J Appl Polym Sci 133:n/a–n/aGoogle Scholar
  91. Jayaraman T, Arumugam Raja S, Priya A, Jagannathan M, Ashokkumar M (2015) Synthesis of a visible-light active V2O5-g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material. New J Chem 39:1367–1374CrossRefGoogle Scholar
  92. Jiang H, Nagai M, Kobayashi K (2009) Enhanced photocatalytic activity for degradation of MB over V2O5/BiVO4 composite. J Alloy Compd 479:821–827CrossRefGoogle Scholar
  93. Jiang Z, Xiao T, Kuznetsov VL, Edwards PP (2010) Turning carbon dioxide into fuel. Philos Trans R Soc A: Math Phys Eng Sci 368:3343–3364CrossRefGoogle Scholar
  94. Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880CrossRefGoogle Scholar
  95. Kafizas A, Kellici S, Darr JA, Parkin IP (2009) Titanium dioxide and composite metal/metal oxide titania thin films on glass: a comparative study of photocatalytic activity. J Photochem Photobiol, A 204:183–190CrossRefGoogle Scholar
  96. Kamegawa T, Shudo T, Yamashita H (2010) Preparation of Cr–Ti binary oxide anchored mesoporous silica by CVD method and their photocatalytic activities. Top Catal 53:555–559CrossRefGoogle Scholar
  97. Karácsonyi É, Baia L, Dombi A, Danciu V, Mogyorósi K, Pop LC, Kovács G, Coşoveanu V, Vulpoi A, Simon S, Pap Z (2013) The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition. Catal Today 208:19–27CrossRefGoogle Scholar
  98. Karunakaran C, Karuthapandian S (2015) V2O5-photocatalyzed oxidation of diphenylamine. In: Materials Science Forum, pp 81–90Google Scholar
  99. Karunakaran C, Sakthiraadha S, Gomathisankar P (2013) Photocatalytic and bactericidal activities of hydrothermally and sonochemically prepared Fe2O3–SnO2 nanoparticles. Mater Sci Semicond Process 16:818–824CrossRefGoogle Scholar
  100. Khan IA, Ullah S, Nasim F, Choucair M, Nadeem MA, Iqbal A, Badshah A, Nadeem MA (2016) Cr2O3–carbon composite as a new support material for efficient methanol electrooxidation. Mater Res Bull 77:221–227CrossRefGoogle Scholar
  101. Kim W, Tachikawa T, Majima T, Choi W (2009) Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: enhanced activity for H2 production and dechlorination of CCl4. J Phys Chem C 113:10603–10609CrossRefGoogle Scholar
  102. Kominami H, Oki K, Kohno M, Onoue S-I, Kera Y, Ohtani B (2001) Novel solvothermal synthesis of niobium(v) oxide powders and their photocatalytic activity in aqueous suspensions. J Mater Chem 11:604–609CrossRefGoogle Scholar
  103. Kovács K, Farkas J, Vereb G, Arany E, Simon G, Schrantz K, Dombi A, Hernadi K, Alapi T (2016) Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides. J Environ Sci Health B 51:205–214CrossRefGoogle Scholar
  104. Koziej D, Rossell MD, Ludi B, Hintennach A, Novák P, Grunwaldt J-D, Niederberger M (2011) Interplay between size and crystal structure of molybdenum dioxide nanoparticles—synthesis, growth mechanism, and electrochemical performance. Small 7:377–387CrossRefGoogle Scholar
  105. Kudo A (2006) Development of photocatalyst materials for water splitting. Int J Hydrogen Energy 31:197–202CrossRefGoogle Scholar
  106. Kudo A, Sayama K, Tanaka A, Asakura K, Domen K, Maruya K, Onishi T (1989) Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction mechanism. J Catal 120:337–352CrossRefGoogle Scholar
  107. Kumar A, Kumar P, Paul S, Jain SL (2016) Visible light assisted reduction of nitrobenzenes using Fe(bpy)3 + 2/rGO nanocomposite as photocatalyst. Appl Surf Sci 386:103–114CrossRefGoogle Scholar
  108. Kun R, Tarján S, Oszkó A, Seemann T, Zöllmer V, Busse M, Dékány I (2009) Preparation and characterization of mesoporous N-doped and sulfuric acid treated anatase TiO2 catalysts and their photocatalytic activity under UV and Vis illumination. J Solid State Chem 182:3076–3084CrossRefGoogle Scholar
  109. Lam SM, Sin JC, Mohamed AR (2016) A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater Sci Semicond Process 47:62–84CrossRefGoogle Scholar
  110. Lau VW-H, Moudrakovski I, Botari T, Weinberger S, Mesch MB, Duppel V, Senker J, Blum V, Lotsch BV (2016) Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat Commun 7Google Scholar
  111. Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv Coll Interface Sci 166:8–23CrossRefGoogle Scholar
  112. Lee J-M, Han S-B, Lee Y-W, Song Y-J, Kim J-Y, Park K-W (2010) RuO2–SnO2 nanocomposite electrodes for methanol electrooxidation. J Alloy Compd 506:57–62CrossRefGoogle Scholar
  113. Li L, Yan B (2009) CeO2–Bi2O3 nanocomposite: two step synthesis, microstructure and photocatalytic activity. J Non-Cryst Solids 355:776–779CrossRefGoogle Scholar
  114. Li B, Xie Y, Jing M, Rong G, Tang Y, Zhang G (2006) In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 22:9380–9385CrossRefGoogle Scholar
  115. Li L, Zhu ZH, Yan ZF, Lu GQ, Rintoul L (2007) Catalytic ammonia decomposition over Ru/carbon catalysts: the importance of the structure of carbon support. Appl Catal A 320:166–172CrossRefGoogle Scholar
  116. Li X, Kikugawa N, Ye J (2008) Nitrogen-doped lamellar niobic acid with visible light-responsive photocatalytic activity. Adv Mater 20:3816–3819CrossRefGoogle Scholar
  117. Li C, Wang F, Zhu J, Yu JC (2010) NaYF4:Yb, Tm/CdS composite as a novel near-infrared-driven photocatalyst. Appl Catal B 100:433–439CrossRefGoogle Scholar
  118. Li B, Liu T, Wang Y, Wang Z (2012) ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J Colloid Interface Sci 377:114–121CrossRefGoogle Scholar
  119. Li X, Xu X, Xia F, Bu L, Qiu H, Chen M, Zhang L, Gao J (2014) Electrochemically active MnO2/RGO nanocomposites using Mn powder as the reducing agent of GO and the MnO2 precursor. Electrochim Acta 130:305–313CrossRefGoogle Scholar
  120. Li FT, Zhao Y, Wang Q, Wang XJ, Hao YJ, Liu RH, Zhao D (2015a) Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification. J Hazard Mater 283:371–381CrossRefGoogle Scholar
  121. Li L, Niu S, Qu Y, Zhang Q, Li H, Li Y, Zhao W, Shi J (2012) J Mater Chem 22:9263Google Scholar
  122. Li SG, Jiang KJ, Su MJ, Cui XP, Huang JH, Zhang QQ, Zhou XQ, Yang LM, Song YL (2015b) Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J Mater Chem A 3:9092–9097CrossRefGoogle Scholar
  123. Li Z, Kong C, Lu G (2015c) Rhodium tin composite oxides co-catalyst for high efficient photocatalytic hydrogen evolution. Int J Hydrogen Energy 40:9061–9068CrossRefGoogle Scholar
  124. Li J, Yang C, Wu Y, Wang B, Sun W, Shao T (2016) On a magnetic-mesoporous composite loaded with emissive Ru(II) complex for oxygen sensing application: Construction, characterization and emission response to oxygen molecules. Inorg Chim Acta 442:111–118CrossRefGoogle Scholar
  125. Liang H, Jiang X, Chen W, Wang S, Xu B, Wang Z (2014) α-Fe2O3/Pt hybrid nanorings and their enhanced photocatalytic activities. Ceram Int 40:5653–5658CrossRefGoogle Scholar
  126. Liang Q, Zhang M, Liu C, Xu S, Li Z (2016) Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl Catal A 519:107–115CrossRefGoogle Scholar
  127. Liao Y, Li H, Liu Y, Zou Z, Zeng D, Xie C (2010) Characterization of photoelectric properties and composition effect of TiO2/ZnO/Fe2O3 composite by combinatorial methodology. J Comb Chem 12:883–889CrossRefGoogle Scholar
  128. Lin Y, Cui X, Yen C, Wai CM (2005) Platinum/Carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J Phys Chem B 109:14410–14415CrossRefGoogle Scholar
  129. Lin F, Montano M, Tian C, Ji Y, Nordlund D, Weng T-C, Moore RG, Gillaspie DT, Jones KM, Dillon AC, Richards RM, Engtrakul C (2014) Electrochromic performance of nanocomposite nickel oxide counter electrodes containing lithium and zirconium. Sol Energy Mater Sol Cells 126:206–212CrossRefGoogle Scholar
  130. Lin W, Zheng H, Zhang P, Xu T (2016) Pt deposited TiO2 films with exposed 001 facets for photocatalytic degradation of a pharmaceutical pollutant. Appl Catal A 521:75–82CrossRefGoogle Scholar
  131. Liu J, Zhang Z, Pan C, Zhao Y, Su X, Zhou Y, Yu D (2004) Enhanced field emission properties of MoO2 nanorods with controllable shape and orientation. Mater Lett 58:3812–3815CrossRefGoogle Scholar
  132. Liu X, Zhang J, Yang T, Guo X, Wu S, Wang S (2011) Synthesis of Pt nanoparticles functionalized WO3 nanorods and their gas sensing properties. Sens Actuators B: Chem 156:918–923CrossRefGoogle Scholar
  133. Liu H, Cao W, Su Y, Wang Y, Wang X (2012) Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI. Appl Catal B 111–112:271–279CrossRefGoogle Scholar
  134. Liu J, Wen S, Hou Y, Zuo F, Beran GJO, Feng P (2013) Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. Angewandte Chemie—Intl Edn 52:3241–3245CrossRefGoogle Scholar
  135. Liu J, Wen Y, Wang Y, Van Aken PA, Maier J, Yu Y (2014) Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv Mater 26:6025–6030CrossRefGoogle Scholar
  136. Liu X, Chen K, Shim J-J, Huang J (2015a) Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties. J Saudi Chem Soc 19:479–484CrossRefGoogle Scholar
  137. Liu X, Liu J, Chu H, Li J, Yu W, Zhu G, Niu L, Sun Z, Pan L, Sun CQ (2015b) Enhanced photocatalytic activity of Bi2O3–Ag2O hybrid photocatalysts. Appl Surf Sci 347:269–274CrossRefGoogle Scholar
  138. Liu H, Guo K, Duan C, Chen X, Zhu Z (2016a) A novel biosensor based on the direct electrochemistry of horseradish peroxidase immobilized in the three-dimensional flower-like Bi2WO6 microspheres. Mater Sci Eng, C 64:243–248CrossRefGoogle Scholar
  139. Liu S, Ma L, Zhang H, Ma C (2016b) ZnS/Ni2P core/shell composites: Simple hydrothermal synthesis, characterization and its photocatalytic degradation of pyronine B. Mater Res Bull 77:271–278CrossRefGoogle Scholar
  140. López-Muñoz MJ, Arencibia A, Segura Y, Raez JM (2016) Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO2 and zero-valent iron. Catal TodayGoogle Scholar
  141. Lou Z, Huang B, Wang Z, Ma X, Zhang R, Zhang X, Qin X, Dai Y, Whangbo M-H (2014) Ag6Si2O7: a Silicate Photocatalyst for the Visible Region. Chem Mater 26:3873–3875CrossRefGoogle Scholar
  142. Lu Y, Hao L, Matsuzaka K, Yoshida H, Asanuma H, Chen J, Pan F (2014) Titanium dioxide–nickel oxide composite coatings: preparation by mechanical coating/thermal oxidation and photocatalytic activity. Mater Sci Semicond Process 24:138–145CrossRefGoogle Scholar
  143. Luo W, Hu X, Sun Y, Huang Y (2011) Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Phys Chem Chem Phys 13:16735–16740CrossRefGoogle Scholar
  144. Luo X, Wang C, Wang L, Deng F, Luo S, Tu X, Au C (2013) Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem Eng J 220:98–106CrossRefGoogle Scholar
  145. Lv Y, Chen J, Zheng RK, Song J, Zhang T, Li X, Shi X, Chen L (2015) Photo-induced enhancement of the power factor of Cu2S thermoelectric films. Sci Rep 5:16291CrossRefGoogle Scholar
  146. Maczka M, Hanuza J, Paraguassu W, Gomes Souza Filho A, Tarso Cavalcante Freire P, Mendes Filho J (2008) Phonons in ferroelectric Bi[sub 2]WO[sub 6]: Raman and infrared spectra and lattice dynamics. Appl Phys Lett 92:112911CrossRefGoogle Scholar
  147. Madhu R, Veeramani V, Chen SM, Manikandan A, Lo AY, Chueh YL (2015) Honeycomb-like porous carbon-cobalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications. ACS Appl Mater Interfaces 7:15812–15820CrossRefGoogle Scholar
  148. Maeda K, Saito N, Daling L, Inoue Y, Domen K (2007) Photocatalytic properties of RuO2-Loaded β-Ge 3N4 for overall water splitting. J Phys Chem C 111:4749–4755CrossRefGoogle Scholar
  149. Mahmoud KH (2016) Synthesis and spectroscopic investigation of cobalt oxide nanoparticles. Polym Compos 37:1881–1885CrossRefGoogle Scholar
  150. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal Today 147:1–59CrossRefGoogle Scholar
  151. Manikandan M, Tanabe T, Li P, Ueda S, Ramesh GV, Kodiyath R, Wang J, Hara T, Dakshanamoorthy A, Ishihara S, Ariga K, Ye J, Umezawa N, Abe H (2014) Photocatalytic water splitting under visible light by mixed-valence Sn 3O4. ACS Appl Mater Interfaces 6:3790–3793CrossRefGoogle Scholar
  152. Manikantan J, Ramalingam HB, Shekar BC, Murugan B, Kumar RR, Santhoshi JS (2016) Wide band gap of Strontium doped Hafnium oxide nanoparticles for opto-electronic device applications—synthesis and characterisation. Mater LettGoogle Scholar
  153. Marszewski M, Cao S, Yu J, Jaroniec M (2015) Semiconductor-based photocatalytic CO2conversion. Mater Horiz 2:261–278CrossRefGoogle Scholar
  154. Maya-Treviño ML, Guzmán-Mar JL, Hinojosa-Reyes L, Ramos-Delgado NA, Maldonado MI, Hernández-Ramírez A (2014) Activity of the ZnO–Fe2O3 catalyst on the degradation of Dicamba and 2,4-D herbicides using simulated solar light. Ceram Int 40:8701–8708CrossRefGoogle Scholar
  155. Miwa T, Kaneco S, Katsumata H, Suzuki T, Ohta K, Chand Verma S, Sugihara K (2010) Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. Int J Hydrogen Energy 35:6554–6560CrossRefGoogle Scholar
  156. Mohamed RM, Mckinney D, Kadi MW, Mkhalid IA, Sigmund W (2016) Platinum/zinc oxide nanoparticles: enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceram Int 42:9375–9381CrossRefGoogle Scholar
  157. Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53CrossRefGoogle Scholar
  158. Moshfegh AZ, Ignatiev A (1990) Photo-enhanced catalytic decomposition of isopropanol on V2O5. Catal Lett 4:113–122CrossRefGoogle Scholar
  159. Nguyen T, Vigneswaran S, Ngo H, Kandasamy J, Choi H (2008) Arsenic removal by photo-catalysis hybrid system. Sep Purif Technol 61:44–50CrossRefGoogle Scholar
  160. Nikolic AS, Boskovic M, Spasojevic V, Jancar B, Antic B (2014) Magnetite/Mn-ferrite nanocomposite with improved magnetic properties. Mater Lett 120:86–89CrossRefGoogle Scholar
  161. Niu C, Lu YZ, Lieber CM (1993) Experimental realization of the covalent solid carbon nitride. Science 261:334–337CrossRefGoogle Scholar
  162. Niu M, Huang F, Cui L, Huang P, Yu Y, Wang Y (2010) Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/Fe2O3 Semiconductor Nanoheterostructures. ACS Nano 4:681–688CrossRefGoogle Scholar
  163. Niu P, Zhang L, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Func Mater 22:4763–4770CrossRefGoogle Scholar
  164. Pan C, Li X, Wang F, Wang L (2008) Synthesis of bismuth oxide nanoparticles by the polyacrylamide gel route. Ceram Int 34:439–441CrossRefGoogle Scholar
  165. Pang YL, Lim S, Ong HC, Chong WT (2016) Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram Int 42:9–34CrossRefGoogle Scholar
  166. Parayil SK, Kibombo HS, Wu C-M, Peng R, Baltrusaitis J, Koodali RT (2012) Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. Int J Hydrogen Energy 37:8257–8267CrossRefGoogle Scholar
  167. Pawar SH, Bhosale PN, Uplane MD, Tamhankar S (1983) Growth of Bi2S3 film using a solution-gas interface technique. Thin Solid Films 110:165–170CrossRefGoogle Scholar
  168. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B: Environ 125:331–349Google Scholar
  169. Perumal Raj K, Thangaraj V, Uthirakumar AP (2016) Enhanced photocatalytic behaviour of synthesized nickel oxide nanoparticles on Fluorescein under different irradiations. Optik—Intl J Light Electron Opt 127:2631–2634CrossRefGoogle Scholar
  170. Pingmuang K, Wetchakun N, Kangwansupamonkon W, Ounnunkad K, Inceesungvorn B, Phanichphant S (2013) Photocatalytic mineralization of organic acids over visible-light-driven Au/BiVO4 photocatalyst. Int J Photoenergy 2013:1–7CrossRefGoogle Scholar
  171. Pisoni A, Jaćimović J, Barišić OS, Spina M, Gaál R, Forró L, Horváth E (2014) Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3. J Phys Chem Lett 5:2488–2492CrossRefGoogle Scholar
  172. Pourbeyram S (2016) Effective removal of heavy metals from aqueous solutions by graphene oxide-zirconium phosphate (GO–Zr–P) nanocomposite. Ind Eng Chem Res 55:5608–5617CrossRefGoogle Scholar
  173. Preethi V, Kanmani S (2014) Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. Int J Hydrogen Energy 39:1613–1622CrossRefGoogle Scholar
  174. Qamar M, Merzougui B, Anjum D, Hakeem AS, Yamani ZH, Bahnemann D (2014) Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide. Catal Today 230:158–165CrossRefGoogle Scholar
  175. Quan X, Hu M, Gao X, Fu Y, Weng L, Wang D, Jiang D, Sun J (2016) Friction and wear performance of dual lubrication systems combining WS2–MoS2 composite film and low volatility oils under vacuum condition. Tribol Int 99:57–66CrossRefGoogle Scholar
  176. Rajpure KY, Bhosale CH (2000) Sb2S3 semiconductor-septum rechargeable storage cell. Mater Chem Phys 64:70–74CrossRefGoogle Scholar
  177. Ram MK, Yavuz O, Lahsangah V, Aldissi M (2005) CO gas sensing from ultrathin nano-composite conducting polymer film. Sensor Actuat B-Chem 106:750–757CrossRefGoogle Scholar
  178. Ramadoss A, Krishnamoorthy K, Kim SJ (2012) Facile synthesis of hafnium oxide nanoparticles via precipitation method. Mater Lett 75:215–217CrossRefGoogle Scholar
  179. Ramos-Delgado NA, Gracia-Pinilla MA, Maya-Trevino L, Hinojosa-Reyes L, Guzman-Mar JL, Hernandez-Ramirez A (2013) Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J Hazard Mater 263(Pt 1):36–44CrossRefGoogle Scholar
  180. Ran J, Yu J, Jaroniec M (2011) Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem 13:2708–2713CrossRefGoogle Scholar
  181. Rao KVS, Subrahmanyam M, Boule P (2004) Immobilized TiO2 photocatalyst during long-term use: decrease of its activity. Appl Catal B 49:239–249CrossRefGoogle Scholar
  182. Reddy BM, Bharali P, Saikia P, Khan A, Loridant S, Muhler M, Grünert W (2007a) Hafnium doped ceria nanocomposite oxide as a novel redox additive for three-way catalysts. J Phys Chem C 111:1878–1881CrossRefGoogle Scholar
  183. Reddy CVS, Wei J, Quan-Yao Z, Zhi-Rong D, Wen C, Mho S-I, Kalluru RR (2007b) Cathodic performance of (V2O5 + PEG) nanobelts for Li ion rechargeable battery. J Power Sources 166:244–249CrossRefGoogle Scholar
  184. Reutergådh LB, Iangphasuk M (1997) Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and us photocatalysis. Chemosphere 35:585–596CrossRefGoogle Scholar
  185. Sagara N, Kamimura S, Tsubota T, Ohno T (2016) Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl Catal B 192:193–198CrossRefGoogle Scholar
  186. Sahu MK, Patel RK (2016) Novel visible-light-driven cobalt loaded neutralized red mud (Co/NRM) composite with photocatalytic activity toward MB dye degradation. J Ind Eng Chem 40:72–82CrossRefGoogle Scholar
  187. Sakthivel S, Geissen SU, Bahnemann DW, Murugesan V, Vogelpohl A (2002) Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. J Photochem Photobiol, A 148:283–293CrossRefGoogle Scholar
  188. Sakunthala A, Reddy MV, Selvasekarapandian S, Chowdari BVR, Selvin PC (2011) Energy storage studies of bare and doped vanadium pentoxide, (V1.95M0.05)O5, M = Nb, Ta, for lithium ion batteries. Energy Environ Sci 4:1712–1725CrossRefGoogle Scholar
  189. Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H, Inoue Y (2004) Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration. J Phys Chem B 108:4369–4375CrossRefGoogle Scholar
  190. Sato S, Morikawa T, Kajino T, Ishitani O (2013) A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angew Chem Int Ed Engl 52:988–992CrossRefGoogle Scholar
  191. Savadogo O, Mandal KC (1992) Studies on new chemically deposited photoconducting antimony trisulphide thin films. Sol Energy Mater Sol Cells 26:117–136CrossRefGoogle Scholar
  192. Savinkina E, Obolenskaya L, Kuzmicheva G (2014) Efficiency of sensitizing nano-titania with organic dyes and peroxo complexes. Appl Nanosci 5:125–133CrossRefGoogle Scholar
  193. Seko A, Togo A, Oba F, Tanaka I (2008) Structure and stability of a homologous series of tin oxides. Phys Rev Lett 100:045702CrossRefGoogle Scholar
  194. Shamaila S, Sajjad AKL, Chen F, Zhang J (2011) WO3/BiOCl, a novel heterojunction as visible light photocatalyst. J Colloid Interface Sci 356:465–472CrossRefGoogle Scholar
  195. Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A 389:1–8CrossRefGoogle Scholar
  196. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRefGoogle Scholar
  197. Sharma P, Kumar P, Deva D, Shrivastav R, Dass S, Satsangi VR (2010) Nanostructured Zn-Fe2O3 thin film modified by Fe-TiO2 for photoelectrochemical generation of hydrogen. Int J Hydrogen Energy 35:10883–10889CrossRefGoogle Scholar
  198. Shi Y, Guo B, Corr SA, Shi Q, Hu Y-S, Heier KR, Chen L, Seshadri R, Stucky GD (2009) Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett 9:4215–4220CrossRefGoogle Scholar
  199. Shivalingappa L, Sheng J, Fukami T (1997) Photocatalytic effect in platinum doped titanium dioxide films. Vacuum 48:413–416CrossRefGoogle Scholar
  200. Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459CrossRefGoogle Scholar
  201. Silva GAF, Da Luz EC, Dos Reis Goyatá F, Da Silva Concilio LR, Neves ACC, Vitti RP, Cunha LG (2016) Influence of surface treatments on topography and bond strength of densely-sintered zirconium-oxide ceramic. Ceramics International 42:8136–8139Google Scholar
  202. Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal A 462–463:178–195CrossRefGoogle Scholar
  203. Sinha ASK, Sahu N, Arora MK, Upadhyay SN (2001) Preparation of egg-shell type Al2O3-supported CdS photocatalysts for reduction of H2O to H2. Catal Today 69:297–305CrossRefGoogle Scholar
  204. Sobhani-Nasab A, Rangraz-Jeddy M, Avanes A, Salavati-Niasari M (2015) Novel sol–gel method for synthesis of PbTiO3 and its light harvesting applications. J Mater Sci: Mater Electron 26:9552–9560Google Scholar
  205. Son S-B, Yersak TA, Piper DM, Kim SC, Kang CS, Cho JS, Suh S-S, Kim Y-U, Oh KH, Lee S-H (2014) A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv Energy Mater 4:1300961CrossRefGoogle Scholar
  206. Song XC, Zheng YF, Yang E, Wang Y (2007) Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4. Mater Lett 61:3904–3908CrossRefGoogle Scholar
  207. Song C, Gui Y, Xing X, Zhang W (2016a) Well-dispersed chromium oxide decorated reduced graphene oxide hybrids and application in energy storage. Mater Chem Phys 173:460–466CrossRefGoogle Scholar
  208. Song Z, Liu W, Wei W, Quan C, Sun N, Zhou Q, Liu G, Wen X (2016b) Preparation and electrochemical properties of Fe2O3/reduced graphene oxide aerogel (Fe2O3/rGOA) composites for supercapacitors. J Alloy Compd 685:355–363CrossRefGoogle Scholar
  209. Steigerwalt ES, Deluga GA, Cliffel DE, Lukehart CM (2001) A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. J Phys Chem B 105:8097–8101Google Scholar
  210. Su F, Mathew SC, Lipner G, Fu X, Antonietti M, Blechert S, Wang X (2010) Mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J Am Chem Soc 132:16299–16301CrossRefGoogle Scholar
  211. Su J, Zou XX, Li GD, Wei X, Yan C, Wang YN, Zhao J, Zhou LJ, Chen JS (2011) Macroporous V2O5-BiVO4 composites: effect of heterojunction on the behavior of photogenerated charges. J Phys Chem C 115:8064–8071CrossRefGoogle Scholar
  212. Sun H, Wang L, Zhang R, Sui J, Xu G (2006) Treatment of groundwater polluted by arsenic compounds by zero valent iron. J Hazard Mater 129:297–303CrossRefGoogle Scholar
  213. Sun J, Li X, Zhao Q, Ke J, Zhang D (2014) Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene. J Phys Chem C 118:10113–10121CrossRefGoogle Scholar
  214. Sun T-W, Zhu Y-J, Qi C, Ding G-J, Chen F, Wu J (2016a) α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres: microwave-assisted solvothermal synthesis and application in photocatalysis. J Colloid Interface Sci 463:107–117CrossRefGoogle Scholar
  215. Sun YP, Ha W, Chen J, Qi HY, Shi YP (2016) Advances and applications of graphitic carbon nitride as sorbent in analytical chemistry for sample pretreatment: a review. TrAC—Trends Anal ChemGoogle Scholar
  216. Tan R, Yang J, Hu J, Wang K, Zhao Y, Pan F (2016) Core–shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chem Commun 52:986–989CrossRefGoogle Scholar
  217. Tang J, Zou Z, Katagiri M, Kako T, Ye J (2004) Photocatalytic degradation of MB on MIn2O4 (M = alkali earth metal) under visible light: effects of crystal and electronic structure on the photocatalytic activity. Catal Today 93–95:885–889CrossRefGoogle Scholar
  218. Tao W, Chang J, Wu D, Gao Z, Duan X, Xu F, Jiang K (2013) Solvothermal synthesis of graphene-Sb2S3 composite and the degradation activity under visible light. Mater Res Bull 48:538–543CrossRefGoogle Scholar
  219. Teramura K, Tanaka T, Hosokawa T, Ohuchi T, Kani M, Funabiki T (2004) Selective photo-oxidation of various hydrocarbons in the liquid phase over V2O5/Al2O3. Catal Today 96:205–209CrossRefGoogle Scholar
  220. Thangavel S, Krishnamoorthy K, Kim S-J, Venugopal G (2016) Designing ZnS decorated reduced graphene-oxide nanohybrid via microwave route and their application in photocatalysis. J Alloy Compd 683:456–462CrossRefGoogle Scholar
  221. Theerthagiri J, Senthil RA, Malathi A, Selvi A, Madhavan J, Ashokkumar M (2015) Synthesis and characterization of a CuS-WO3 composite photocatalyst for enhanced visible light photocatalytic activity. RSC Adv 5:52718–52725CrossRefGoogle Scholar
  222. Tian F (2002) Sol–gel derived iridium composite glucose biosensor. Sens Actuators B: Chem 86:266–270CrossRefGoogle Scholar
  223. Tsai M-C, Tsai Y-C (2009) Adsorption of glucose oxidase at platinum-multiwalled carbon nanotube-alumina-coated silica nanocomposite for amperometric glucose biosensor. Sens Actuators B: Chem 141:592–598CrossRefGoogle Scholar
  224. Varisli D, Elverisli EE (2014) Synthesizing hydrogen from ammonia over Ru incorporated SiO2 type nanocomposite catalysts. Int J Hydrogen Energy 39:10399–10408CrossRefGoogle Scholar
  225. Veréb G, Ambrus Z, Pap Z, Kmetykó Á, Dombi A, Danciu V, Cheesman A, Mogyorósi K (2012) Comparative study on UV and visible light sensitive bare and doped titanium dioxide photocatalysts for the decomposition of environmental pollutants in water. Appl Catal A 417–418:26–36CrossRefGoogle Scholar
  226. Veréb G, Manczinger L, Bozsó G, Sienkiewicz A, Forró L, Mogyorósi K, Hernádi K, Dombi A (2013a) Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation. Appl Catal B 129:566–574CrossRefGoogle Scholar
  227. Veréb G, Manczinger L, Oszkó A, Sienkiewicz A, Forró L, Mogyorósi K, Dombi A, Hernádi K (2013b) Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2. Appl Catal B 129:194–201CrossRefGoogle Scholar
  228. Veréb G, Ambrus Z, Pap Z, Mogyorósi K, Dombi A, Hernádi K (2014) Immobilization of crystallized photocatalysts on ceramic paper by titanium(IV) ethoxide and photocatalytic decomposition of phenol. React Kinet Mech Catal 113:293–303CrossRefGoogle Scholar
  229. Wang C, Huang Z (2016) Controlled synthesis of α-Fe2O3 nanostructures for efficient photocatalysis. Mater Lett 164:194–197CrossRefGoogle Scholar
  230. Wang C, Ao Y, Wang P, Hou J, Qian J (2010) A facile method for the preparation of titania-coated magnetic porous silica and its photocatalytic activity under UV or visible light. Colloids Surf, A 360:184–189CrossRefGoogle Scholar
  231. Wang D, Xue G, Zhen Y, Fu F, Li D (2012) Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities. J Mater Chem 22:4751CrossRefGoogle Scholar
  232. Wang W, Huang X, Wu S, Zhou Y, Wang L, Shi H, Liang Y, Zou B (2013) Preparation of p–n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Appl Catal B 134–135:293–301CrossRefGoogle Scholar
  233. Wang J, Dong C, Jiang BB, Wu KL, Sun J, Li XZ, Zhang WJ, Zhang B, Wei XW (2014a) Preparation of visible light-driven Ag2CO3/BiOBr composite photocatalysts with universal degradation abilities. Mater Lett 131:108–111CrossRefGoogle Scholar
  234. Wang J, Yu W, Xu S, Dai S, Wang J, Wang C, Zeng W, Cao P (2014b) A study on the precursor of vanadium pentoxide by the hydrothermal method. Ceram Int 40:317–321CrossRefGoogle Scholar
  235. Wang M, Chen J, Liao X, Liu Z, Zhang J, Gao L, Li Y (2014c) Highly efficient photocatalytic hydrogen production of platinum nanoparticle-decorated SiC nanowires under simulated sunlight irradiation. Int J Hydrogen Energy 39:14581–14587CrossRefGoogle Scholar
  236. Wang D, Cai D, Wang C, Liu B, Wang L, Liu Y, Li H, Wang Y, Li Q, Wang T (2016a) Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors. Nanotechnology 27:255501CrossRefGoogle Scholar
  237. Wang J-W, Chen Y, Chen B-Z (2016b) Synthesis and control of high-performance MnO2/carbon nanotubes nanocomposites for supercapacitors. J Alloy Compd 688:184–197CrossRefGoogle Scholar
  238. Wang P, Wang L, Sun Q, Qiu S, Liu Y, Zhang X, Liu X, Zheng L (2016c) Preparation and performance of Fe3O4@hydrophilic graphene composites with excellent Photo-Fenton activity for photocatalysis. Mater Lett 183:61–64CrossRefGoogle Scholar
  239. Wodka D, Socha RP, Bielańska E, Elżbieciak-Wodka M, Nowak P, Warszyński P (2014) Photocatalytic activity of titanium dioxide modified by Fe2O3 nanoparticles. Appl Surf Sci 319:173–180CrossRefGoogle Scholar
  240. Wu T, Liang K (2016) Caterpillar structured Ni(OH)2@MnO2core/shell nanocomposite arrays on nickel foam as high performance anode materials for lithium ion batteries. RSC Adv. 6:15541–15548CrossRefGoogle Scholar
  241. Wu P, Xie R, Imlay JA, Shang JK (2009) Visible-light-induced photocatalytic inactivation of bacteria by composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide. Appl Catal B 88:576–581CrossRefGoogle Scholar
  242. Wu P, Dai Y, Sun T, Ye Y, Meng H, Fang X, Yu B, Dai L (2011) Impurity-dependent photoresponse properties in single CdSe nanobelt photodetectors. ACS Appl Mater Interfaces 3:1859–1864CrossRefGoogle Scholar
  243. Wu D, Wang L, Song X, Tan Y (2013a) Enhancing the visible-light-induced photocatalytic activity of the self-cleaning TiO2-coated cotton by loading Ag/AgCl nanoparticles. Thin Solid Films 540:36–40CrossRefGoogle Scholar
  244. Wu L, Xu H, Han Q, Wang X (2013b) Large-scale synthesis of double cauliflower-like Sb2S3 microcrystallines by hydrothermal method. J Alloy Compd 572:56–61CrossRefGoogle Scholar
  245. Wu J-Z, Li X-Y, Zhu Y-R, Yi T-F, Zhang J-H, Xie Y (2016) Facile synthesis of MoO2/CNTs composites for high-performance supercapacitor electrodes. Ceram Int 42:9250–9256CrossRefGoogle Scholar
  246. Xia C, Zhang Y, Liu M (2003) Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells. Appl Phys Lett 82:901–903CrossRefGoogle Scholar
  247. Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phys Chem C 115:7355–7363CrossRefGoogle Scholar
  248. Xiang Q, Cheng F, Lang D (2016) Hierarchical layered WS2/graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution. Chemsuschem 9:996–1002CrossRefGoogle Scholar
  249. Xiao X, Hao R, Liang M, Zuo X, Nan J, Li L, Zhang W (2012) One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. J Hazard Mater 233–234:122–130CrossRefGoogle Scholar
  250. Xiao Y, Chen CS, Cao SY, Qian GP, Nie XB, Yu WW (2015) Enhanced sunlight-driven photocatalytic activity of graphene oxide/Bi2WO6 nanoplates by silicon modification. Ceram Int 41:10087–10094CrossRefGoogle Scholar
  251. Xiaohong W, Wei Q, Weidong H (2007) Thin bismuth oxide films prepared through the sol–gel method as photocatalyst. J Mol Catal A: Chem 261:167–171CrossRefGoogle Scholar
  252. Xie H, Que W, He Z, Zhong P, Liao Y, Wang G (2013) Preparation and photocatalytic activities of Sb2S3/TiO2 nanotube coaxial heterogeneous structure arrays via an ion exchange adsorption method. J Alloy Compd 550:314–319CrossRefGoogle Scholar
  253. Xie J, Zhou Z, Lian Y, Hao Y, Li P, Wei Y (2015) Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceram Int 41:2622–2625CrossRefGoogle Scholar
  254. Xiong D-N, Huang G-F, Zhou B-X, Yan Q, Pan A-L, Huang W-Q (2016) Facile ion-exchange synthesis of mesoporous Bi2S3/ZnS nanoplate with high adsorption capability and photocatalytic activity. J Colloid Interface Sci 464:103–109CrossRefGoogle Scholar
  255. Xue S, Wei Z, Hou X, Xie W, Li S, Shang X, He D (2015) Enhanced visible-light photocatalytic activities and mechanism insight of BiVO4/Bi2WO6 composites with virus-like structures. Appl Surf Sci 355:1107–1115CrossRefGoogle Scholar
  256. Yamamoto M, Yoshida T, Yamamoto N, Nomoto T, Yamamoto Y, Yagi S, Yoshida H (2015) Photocatalytic reduction of CO2 with water promoted by Ag clusters in Ag/Ga2 O3 photocatalysts. J Mater Chem A 3:16810–16816CrossRefGoogle Scholar
  257. Yasushi Y, Katsuji Y, Yumi M, Masami O (2003) A Thick-Film NO2 sensor fabricated using Zn–Sn–Sb–O composite material. Jpn J Appl Phys 42:7594CrossRefGoogle Scholar
  258. Ye S, Wang R, Wu MZ, Yuan YP (2015) A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl Surf SciGoogle Scholar
  259. Yin S (2004) Nano Ru/CNTs: a highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decomposition. Appl Catal B 48:237–241CrossRefGoogle Scholar
  260. Yin H, Zhou Y, Li B, Li X, Yang Z, Ai S, Zhang X (2015) Photoelectrochemical immunosensor for microRNA detection based on gold nanoparticles-functionalized g-C3N4 and anti-DNA: RNA antibody. Sens Actuators, B: ChemGoogle Scholar
  261. Yu C, Yang K, Yu JC, Cao F, Li X, Zhou X (2011) Fast fabrication of Co3O4 and CuO/BiVO4 composite photocatalysts with high crystallinity and enhanced photocatalytic activity via ultrasound irradiation. J Alloy Compd 509:4547–4552CrossRefGoogle Scholar
  262. Yu C, Cao F, Li G, Wei R, Yu JC, Jin R, Fan Q, Wang C (2013) Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation. Sep Purif Technol 120:110–122CrossRefGoogle Scholar
  263. Yu Q, Zhang F, Li G, Zhang W (2016) Preparation and photocatalytic activity of triangular pyramid NaNbO3. Appl Catal B 199:166–169CrossRefGoogle Scholar
  264. Yuan D, Zeng J, Kristian N, Wang Y, Wang X (2009) Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. Electrochem Commun 11:313–317CrossRefGoogle Scholar
  265. Yuan D, Yang W, Ni J, Gao L (2015) Sandwich structured MoO2@TiO2@CNT nanocomposites with high-rate performance for lithium ion batteries. Electrochim Acta 163:57–63CrossRefGoogle Scholar
  266. Yue G, Hong-Yu X, Zeng-Rong J, Zhi-Xiang X (2015) Mechanical properties and thermal shock resistance of rhenium coating in iridium/rhenium/carbon-carbon composites. Procedia Eng 99:1407–1414CrossRefGoogle Scholar
  267. Yun S, Zhou H, Wang L, Zhang H, Ma T (2013) Economical hafnium oxygen nitride binary/ternary nanocomposite counter electrode catalysts for high-efficiency dye-sensitized solar cells. J Mater Chem A 1:1341–1348CrossRefGoogle Scholar
  268. Yurkov GY, Kozinkin AV, Koksharov YA, Fionov AS, Taratanov NA, Vlasenko VG, Pirog IV, Shishilov ON, Popkov OV (2012) Synthesis and properties of rhenium–polyethylene nanocomposite. Compos B Eng 43:3192–3197CrossRefGoogle Scholar
  269. Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690CrossRefGoogle Scholar
  270. Zhang A, Zhang J (2010) Synthesis and characterization of Ag/BiVO4 composite photocatalyst. Appl Surf Sci 256:3224–3227CrossRefGoogle Scholar
  271. Zhang J, Xu H, Ge Q, Li W (2006a) Highly efficient Ru/MgO catalysts for NH3 decomposition: synthesis, characterization and promoter effect. Catal Commun 7:148–152CrossRefGoogle Scholar
  272. Zhang L, Fu H, Zhang C, Zhu Y (2006b) Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles. J Solid State Chem 179:804–811CrossRefGoogle Scholar
  273. Zhang Z, Wang W, Shang M, Yin W (2010) Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst. J Hazard Mater 177:1013–1018CrossRefGoogle Scholar
  274. Zhang G-Y, Feng Y, Xu Y-Y, Gao D-Z, Sun Y-Q (2012) Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Mater Res Bull 47:625–630CrossRefGoogle Scholar
  275. Zhang Y, Zhang Y, Tan J (2013) Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light. J Alloy Compd 574:383–390CrossRefGoogle Scholar
  276. Zhang J, Wang X, Qin D, Xue Z, Lu X (2014) Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction. Appl Surf Sci 320:73–82CrossRefGoogle Scholar
  277. Zhang D, Chang H, Li P, Liu R (2015a) Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J Mater Sci: Mater Electron 27:3723–3730Google Scholar
  278. Zhang L, Bai Q, Jin K, Wang L, Zhang Y, Yanhua S (2015b) Synthesis and electrochemical performance of Bi2WO6/graphene composite as anode material for lithium-ion batteries. Mater Lett 141:88–91CrossRefGoogle Scholar
  279. Zhang W, Hu M, Liu X, Wei Y, Li N, Qin Y (2016) Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor. J Alloy Compd 679:391–399CrossRefGoogle Scholar
  280. Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7:15–37CrossRefGoogle Scholar
  281. Zheng W, Zhang J, Xu H, Li W (2007) NH3 decomposition kinetics on supported Ru clusters: morphology and particle size effect. Catal Lett 119:311–318CrossRefGoogle Scholar
  282. Zhou F, Zhao X, Yuan C, Li L (2008) Vanadium pentoxide nanowires: hydrothermal synthesis, formation mechanism, and phase control parameters. Cryst Growth Des 8:723–727CrossRefGoogle Scholar
  283. Zhou L, Wang W, Xu H, Sun S, Shang M (2009) Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis. Chem—Eur J 15:1776–1782CrossRefGoogle Scholar
  284. Zhou W, Cheng C, Liu J, Tay YY, Jiang J, Jia X, Zhang J, Gong H, Hng HH, Yu T, Fan HJ (2011) Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv Func Mater 21:2439–2445CrossRefGoogle Scholar
  285. Zhou X, Bai L, Yan J, He S, Lei Z (2013) Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance. Electrochim Acta 108:17–21CrossRefGoogle Scholar
  286. Zhou E, Wang C, Zhao Q, Li Z, Shao M, Deng X, Liu X, Xu X (2016) Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes and photocatalysts. Ceram Int 42:2198–2203CrossRefGoogle Scholar
  287. Zhu Y, Yu F, Man Y, Tian Q, He Y, Wu N (2005) Preparation and performances of nanosized Ta2O5 powder photocatalyst. J Solid State Chem 178:224–229CrossRefGoogle Scholar
  288. Zhu LA, Bai S, Zhang H, Ye Y, Gao W (2013) Rhenium used as an interlayer between carbon–carbon composites and iridium coating: Adhesion and wettability. Surf Coat Technol 235:68–74CrossRefGoogle Scholar
  289. Zhu X, Wang P, Huang B, Ma X, Qin X, Zhang X, Dai Y (2016) Synthesis of novel visible light response Ag10Si4O13 photocatalyst. Appl Catal B 199:315–322CrossRefGoogle Scholar
  290. Zinatloo-Ajabshir S, Salavati-Niasari M (2016) Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: structural, optical and photocatalytic studies. J Mol Liq 216:545–551CrossRefGoogle Scholar
  291. Zou J-P, Ma J, Luo J-M, Yu J, He J, Meng Y, Luo Z, Bao S-K, Liu H-L, Luo S-L, Luo X-B, Chen T-C, Suib SL (2015) Fabrication of novel heterostructured few layered WS2-Bi2WO6/Bi3.84W0.16O6.24 composites with enhanced photocatalytic performance. Appl Catal B 179:220–228CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zsolt Kása
    • 1
  • Tamás Gyulavári
    • 2
  • Gábor Veréb
    • 3
  • Gábor Kovács
    • 2
    • 4
    • 5
  • Lucian Baia
    • 4
    • 5
  • Zsolt Pap
    • 1
    • 4
    • 5
    Email author
  • Klára Hernádi
    • 2
    Email author
  1. 1.Institute of Environmental Science and TechnologyUniversity of SzegedSzegedHungary
  2. 2.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  3. 3.Department of Process Engineering, Faculty of EngineeringUniversity of SzegedSzegedHungary
  4. 4.Institute for Interdisciplinary Research on Bio-Nano-SciencesBabeș-Bolyai UniversityCluj-NapocaRomania
  5. 5.Faculty of PhysicsBabeș-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations