Titanium-Based Mixed Metal Oxide Nanocomposites for Visible Light-Induced Photocatalysis

  • Soumyashree Pany
  • Amtul Nashim
  • Kulamani ParidaEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


The concept of photocatalysis is not new, but the photocatalyst used for the process of photocatalysis is improving day by day. To take the concept of photocatalysis in advanced manner, titanium-based mixed metal oxide nanocomposites photocatalyst has been introduced in the field of photocatalysis. A brief study on the photocatalytic activity of the titanium-based mixed metal oxide nanocomposites (by categorizing blockwise into s, p, d, f groups) has been given in this chapter. The mechanism behind the improved photoactivity of the nanocomposite, due to the efficient charge separation at the heterojunction interface, is summarized. Various structures adopted by titanium-based mixed metal oxides like perovskite, pyrochlore, ilmenite, etc. by considering their ionic radii are reviewed here. Morphology, surface area, lattice and energy level matching etc. are some of the key factors responsible for the improved photoactivity with examples are discussed briefly. The photocatalytic activity of mixed metal oxide nanocomposites beyond titanium is also reviewed here in the last section. This book chapter may give a new insight for the development of research on nanocomposite in the field of photocatalysis as well as other fields such as supercapacitor and sensors.


Titanium Mixed metal oxide Nanocomposite Visible light Photocatalysis 


  1. Abe R, Higashi M, Sayama K, Abe O, Sugihara H (2006) Photocatalytic activity of R3MO7 and R2Ti2O7 (R) Y, Gd, La; M) Nb, Ta for water splitting into H2 and O2. J Phys Chem B 110:2219–2226CrossRefGoogle Scholar
  2. Alexe M, Gruverman A, Harnagea C, Zakharov ND, Pignolet A, Hesse D, Scott JF (1999) Switching properties of self-assembled ferroelectric memory cells. Appl Phys Lett 75:1158–1160CrossRefGoogle Scholar
  3. Ao Y, Xu L, Wang P, Wang C, Hou J, Qian J, Li Y (2015) Graphene and TiO2 co-modified flower-like Bi2O2CO3: a novel multi-heterojunction photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 355:411–418CrossRefGoogle Scholar
  4. Ao Y, Wang K, Wang P, Wang C, Hou J (2016) Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation. Appl Catal B Environ 194:157–168CrossRefGoogle Scholar
  5. Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) TiO2-B nanowires. Angew Chem Int Ed 43:2286–2288CrossRefGoogle Scholar
  6. Borse PH, Kim JY, Lee JS, Lim KT, Jeong ED, Bae JS, Yoon JH, Yu SM, Kim HG (2012) Ti-dopant-enhanced photocatalytic activity of a CaFe2O4/MgFe2O4 bulk heterojunction under visible-light irradiation. J Korean Phys Soc 61:73–79CrossRefGoogle Scholar
  7. Burbure NV, Salador PA, Rohrer GS (2010) Photochemical reactivity of titania films on BaTiO3 substrates: origin of spatial selectivity. Chem Mater 22:5823–5830CrossRefGoogle Scholar
  8. Cao T, Li Y, Wang C, Shao C, Liu Y (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27:2946–2952CrossRefGoogle Scholar
  9. Chaiwichian S, Inceesungvorn B, Wetchakun K, Phanichphant S, Kangwansupamonkon W, Wetchakun N (2014) Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts. Mater Res Bull 54:28–33CrossRefGoogle Scholar
  10. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefGoogle Scholar
  11. Chen J, Liu S, Zhang L, Chen N (2015) New SnS2/La2Ti2O7 heterojunction photocatalyst with enhanced visible-light activity. Mater Lett 150:44–47CrossRefGoogle Scholar
  12. Dadigala R, Gangapuram BR, Bandi R, Dasari A, Gutten V (2016) Synthesis and characterization of C-TiO2/FeTiO3 and CQD/C-TiO2/FeTiO3 photocatalysts with enhanced photocatalytic activities under sunlight irradiation. Acta Metall Sin (Engl Lett) 29:17–27Google Scholar
  13. Enhessari M, Kargar-Razi M, Moarefi P, Parviz A (2012) Synthesis, characterization and photocatalytic properties of MnTiO3-Zeolite-Y nanocomposites. J Nanostruct 1:119–125Google Scholar
  14. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  15. Gao B, Kim YJ, Chakraborty AK, Lee WI (2008) Efficient decomposition of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation. Appl Catal B-Environ 83:202–207CrossRefGoogle Scholar
  16. Gawande MB, Pandey RK, Jayaram RV (2012) Role of mixed metal oxides in catalysis science-versatile applications in organic synthesis. Catal Sci Technol 2:1113–1125CrossRefGoogle Scholar
  17. Giocondi JL, Rohrer GS (2001) Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3. J Phys Chem B 105:8275–8277CrossRefGoogle Scholar
  18. Guo F, Weilong S, Lin X, Yan X, Guo Y, Che G (2015) Novel BiVO4/InVO4 heterojunctions: Facile synthesis and efficient visible-light photocatalytic performance for the degradation of rhodamine B. Sep Purif Technol 141:246–255CrossRefGoogle Scholar
  19. Han T, Chen Y, Tian G, Wang JQ, Ren Z, Zhou W, Fu H (2015) Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation. Nanoscale 7:15924–15934CrossRefGoogle Scholar
  20. Han C, Liu J, Yang W, Wu Q, Yang H, Xue X (2016) Photocatalytic activity of CaTiO3 synthesized by solid state, sol-gel and hydrothermal methods. J Sol-Gel Sci Technol. doi: 10.1007/s10971-016-4261-3 Google Scholar
  21. Hong LI, Gang JC, Zhong LI, Hua ZC (2007) Synthesis and photocatalytic decomposition of water under visible light irradiation of La2Ti2-xCoxO7 with pyrochlore structure. Acta Phys Chim Sin 23:761–764Google Scholar
  22. Hou X, Tian Y, Zhang X, Dou S, Pan L, Wang W, Li Y, Zhao J (2015) Preparation and characterization of Fe3O4/SiO2/Bi2MoO6 composite as magnetically separable photocatalyst. J Alloys Compd 638:214–220CrossRefGoogle Scholar
  23. Hu S, Chi B, Pu J, Jian L (2014) Novel heterojunction photocatalysts based on lanthanum titanate nanosheets and indium oxide nanoparticles with enhanced photocatalytic hydrogen production activity. J Mater Chem A 2:19260–19267CrossRefGoogle Scholar
  24. Huang S, Xu Y, Xie M, Xu H, He M, Xia J, Huang L, Li H (2015) Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf A 478:71–80CrossRefGoogle Scholar
  25. Hwang DW, Kim HG, Jang SJ, Bae SW, Ji SM, Lee JS (2004) Photocatalytic decomposition of water-methanol solution over metal-doped layered perovskites under visible light irradiation. Catal Today 93:845–850CrossRefGoogle Scholar
  26. Inceesungvorn B, Teeranunpong T, Nunkaew J, Suntalelat S, Tantraviwat D (2014) Novel NiTiO3/Ag3VO4 composite with enhanced photocatalytic performance under visible light. Catal Commun 54:35–38CrossRefGoogle Scholar
  27. Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ > 650 nm). J Am Chem Soc 124:13547–13553CrossRefGoogle Scholar
  28. Ji Y, Cao J, Jiang L, Zhang Y, Yi Z (2014) G-C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity. J Alloys Compd 590:9–14CrossRefGoogle Scholar
  29. Jia Y, Shen S, Wang D, Wang X, Shi J, Zhang F, Han H, Li C (2013) Composite Sr2TiO4/SrTiO3(La, Cr) heterojunction based photocatalyst for hydrogen production under visible light irradiation. J Mater Chem A 1:7905–7912CrossRefGoogle Scholar
  30. Jiang S, Ren Z, Li M, Gong S, Yu Y, Pei J, Wei X, Shen G, Han G (2015) Single-crystal heterostructured PbTiO3/CdS nanorods with enhanced visible-light-driven photocatalytic performance. RSC Adv 5:54454–54459CrossRefGoogle Scholar
  31. Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19:19995–20022CrossRefGoogle Scholar
  32. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089CrossRefGoogle Scholar
  33. Kim YJ, Gao B, Han SY, Jung MH, Chakraborty AK, Ko T, Lee C, Lee WI (2009) Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst. J Phys Chem C 113:19179–19184CrossRefGoogle Scholar
  34. Kumar S, Tonda S, Baruah A, Kumar B, Shanker V (2014) Synthesis of novel and stable g-C3N4/N-doped SrTiO3 hybrid nanocomposites with improved photocurrent and photocatalytic activity under visible light irradiation. Dalton Trans 43:16105–16114CrossRefGoogle Scholar
  35. Li L, Zhang Y, Schultz AM, Liu X, Salvador PA, Rohrer GS (2012) Visible light photochemical activity of heterostructured PbTiO3-TiO2 core-shell particles. Catal Sci Technol 2:1945–1952CrossRefGoogle Scholar
  36. Li R, Li Q, Zong L, Wang X, Yang J (2013a) BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity. Electrochim Acta 91:30–35Google Scholar
  37. Li P, Zhao X, Jia C, Sun H, Sun L, Cheng X, Liu L, Fan W (2013b) ZnWO4/BiOI heterostructures with highly efficient visible light photocatalytic activity: the case of interface lattice and energy level match. J Mater Chem A 1:3421–3429Google Scholar
  38. Li J, Cui M, Guo Z, Liu Z, Zhu Z (2014) Synthesis of dumbbell-like CuO-BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Mater Lett 130:36–39CrossRefGoogle Scholar
  39. Lim SH, Luo J, Zhong Z, Ji W, Lin J (2005) Room temperature hydrogen uptake by TiO2 nanotubes. Inorg Chem 44:4124–4126CrossRefGoogle Scholar
  40. Lin X, Guo X, Shi W, Zhao L, Yan Y, Wang Q (2015) Ternary heterostructured Ag-BiVO4/InVO4 composites: synthesis and enhanced visible-light-driven photocatalytic activity. J Alloys Compd 635:256–264CrossRefGoogle Scholar
  41. Liu XC, Hong R, Tian C (2009) Tolerance factor and the stability discussion of ABO3-type ilmenite. J Mater Sci: Mater Electron 20:323–327Google Scholar
  42. Liu H, Waclawik ER, Zheng Z, Yang D, Ke X, Zhu H, Frost RL (2010) TEM Investigation and FBB model explanation to the phase relationships between titanates and titanium dioxides. J Phys Chem C 114:11430–11434CrossRefGoogle Scholar
  43. Liu Y, Chen G, Zhou C, Hu Y, Fu D, Liu J, Wang Q (2011) Higher visible photocatalytic activities of nitrogen doped In2TiO5 sensitized by carbon nitride. J Hazard Mater 190:75–80CrossRefGoogle Scholar
  44. Liu J, Ding T, Li Z, Zhao J, Li S, Liu J (2013) Photocatalytic hydrogen production over In2S3-Pt-Na2Ti3O7 nanotube films under visible light irradiation. Ceram Int 39:8059–8063CrossRefGoogle Scholar
  45. Liu X, Kang Y, Luo D (2016) Synthesis of novel Au/FeVO4/Bi2O3 heterojunction for efficient visible light-driven photocatalysis. Mater Lett 185:189–192CrossRefGoogle Scholar
  46. Lv J, Kako T, Li Z, Zou Z, Ye J (2010) Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles. J Phys Chem C 114:6157–6162CrossRefGoogle Scholar
  47. Ma RZ, Fukuda K, Sasaki T, Osada M, Bando Y (2005) Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. J Phys Chem B 109:6210–6214CrossRefGoogle Scholar
  48. Martha S, Padhi DK, Parida K (2014) Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production. Chemsuschem 7:585–597CrossRefGoogle Scholar
  49. Misono M (2013) Studies in surface science and catalysis, heterogeneous catalysis of mixed oxides-perovskite and heteropoly catalysts, vol 176, pp 25-65Google Scholar
  50. Nashim A, Parida KM (2013) Novel Sm2Ti2O7/SmCrO3heterojunction based composite photocatalyst for degradation of Rhodamine 6G dye. Chem Eng J 215:608–615CrossRefGoogle Scholar
  51. Nashim A, Parida KM (2014) n-La2Ti2O7/p-LaCrO3: a novel heterojunction based composite photocatalyst with enhanced photoactivity towards hydrogen production. J Mater Chem A 2:18405–18412CrossRefGoogle Scholar
  52. Nashim A, Martha S, Parida KM (2013) Gd2Ti2O7/In2O3: efficient visible-light-driven heterojunction-based composite photocatalysts for hydrogen production. ChemCatChem 5:2352–2359CrossRefGoogle Scholar
  53. Nashim A, Martha S, Parida KM (2014) Heterojunction conception of n- La2Ti2O7/p-CuO in the limelight of photocatalytic formation of hydrogen under visible light. RSC Adv. 4:14633–14643CrossRefGoogle Scholar
  54. Padhi DK, Parida K, Singh SK (2015) Facile fabrication of RGO/N-GZ mixed oxide nanocomposite for efficient hydrogen production under visible light. J Phys Chem C 119:6634–6646CrossRefGoogle Scholar
  55.  Parida KM, Nashim A, Mahanta SK (2011) Visible-light driven Gd2Ti2O7/GdCrO3 composite for hydrogen evolution. Dalton Trans 40:12839–12845Google Scholar
  56. Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Lanthanum-substituted bismuth titanate for use in nonvolatile memories. Nature 401:682–684CrossRefGoogle Scholar
  57. Patwe SJ, Katari V, Salke NP, Deshpande SK, Rao R, Gupta MK, Mittal Achary SN, Tyagi AK (2015) Structural and electrical properties of layered perovskite type Pr2Ti2O7: experimental and theoretical investigations. J Mater Chem C 3:4570–4584CrossRefGoogle Scholar
  58. Pena MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2018CrossRefGoogle Scholar
  59. Preciado MAR, Kassiba A, Morales-Acevedoc A, Makowska-Janusik M (2015) Vibrational and electronic peculiarities of NiTiO3 nanostructures inferred from first principle calculations. RSC Adv 5:17396–17404CrossRefGoogle Scholar
  60. Razali MH, Noor AFM, Mohamed AR, Sreekantan S (2012) Morphological and structural studies of titanate and titania nanostructured materials obtained after heat treatments of hydrothermally produced layered titanate. J Nanomater 2012: Article ID 962073, 10pGoogle Scholar
  61. Reddy KH, Martha S, Parida KM (2012) Facile fabrication of Bi2O3/Bi-NaTaO3 photocatalysts for hydrogen generation under visible light irradiation. RSC Adv 2:9423–9436CrossRefGoogle Scholar
  62. Reddy KH, Martha S, Parida KM (2013) Fabrication of novel p–BiOI/n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation. Inorg Chem 52:6390–6401CrossRefGoogle Scholar
  63. Shao Z, Saitzek S, Roussel P, Desfeux R (2012) Stability limit of the layered-perovskite structure in Ln2Ti2O7 (Ln = lanthanide) thin films grown on (110)-oriented SrTiO3 substrates by the so-gel route. J Mater Chem 22:24894–24901CrossRefGoogle Scholar
  64. Shcherbakova LG, Mamsurova LG, Sukhanova GE (1979) Lanthanide titanates. Russ Chem Rev 48:228–242CrossRefGoogle Scholar
  65. Shen J, Li X, Huang W, Li N, Ye M (2013) Synthesis of novel photocatalytic RGO-InVO4 nanocomposites with visible light photoactivity. Mater Res Bull 48:3112–3116CrossRefGoogle Scholar
  66. Shi W, Guo F, Chen J, Che G, Lin X (2014) Hydrothermal synthesis of InVO4/Graphitic carbon nitride heterojunctions and excellent visible-light-driven photocatalytic performance for rhodamine B. J Alloys Compd 612:143–148CrossRefGoogle Scholar
  67. Sivakumar S, Selvaraj A, Ramasamy AK (2013b) Photocatalytic degradation of organic reactive dyes over MnTiO3/TiO2 heterojunction composites under UV-visible irradiation. Photochem Photobiol 89:1047–1056Google Scholar
  68. Sivakumar S, Selvaraj A, Ramasamy AK, Balasubramanian A (2013a) Enhanced photocatalytic degradation of reactive dyes over FeTiO3/TiO2 heterojunction in the presence of H2O2. Water Air Soil Pollut 224:1529–1542Google Scholar
  69. Stengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114:217–226CrossRefGoogle Scholar
  70. Su NR, Lv P, Li M, Zhang X, Li M, Niu J (2014) Fabrication of MgFe2O4-ZnO heterojunction photocatalysts for application of organic pollutants. Mater Lett 122:201–204CrossRefGoogle Scholar
  71. Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9:2229–2238CrossRefGoogle Scholar
  72. Tian X, Liu J, Wang H, Yan H (2014) La2Ti2O7 nanoplates decorated with Cu2ZnSnS4 nanoparticles for enhanced visible-light-driven photocatalytic activity. CrystEngComm 16:8517–8522CrossRefGoogle Scholar
  73. Truong QD, Liu JY, Chung CC, Ling YC (2012) Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal Commun 19:85–89CrossRefGoogle Scholar
  74. Ueda K, Yanagi H, Noshiro R, Hosono H, Kawazoe H (1998) Vacuum ultraviolet reflectance and electron energy loss spectra of CaTiO3. J Phys: Condens Matter 10:3669–3677Google Scholar
  75. Wang R, Xu D, Liu J, Li KW, Wang H (2011) Preparation and photocatalytic properties of CdS/ La2Ti2O7 nanocomposites under visible light. Chem Eng J 168:455–460CrossRefGoogle Scholar
  76. Wang R, Zhu Q, Wang W, Fan C, Xu A (2015) BaTiO3-graphene nanocomposites: synthesis and visible light photocatalytic activity. New J Chem 39:4407–4413CrossRefGoogle Scholar
  77. Wu HB, Lou XW, Hng HH (2012) Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO2 for lithium-ion batteries. Chem-Eur J 18:2094–2099CrossRefGoogle Scholar
  78. Wu Y, Wang LQ, Yang X (2015) Photocatalytic properties of Ag-modified MgZnO/RGO composites. Mater Res Innovations 19:318–321CrossRefGoogle Scholar
  79. Xian T, Yang H, Huo YS (2014) Enhanced photocatalytic activity of CaTiO3-graphene nanocomposites for dye degradation. Phys Scr 89:115801 (6 pp)Google Scholar
  80. Xian T, Yang H, Di LJ, Dai JF (2015) Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation. J Alloys Compd 622:1098–1104CrossRefGoogle Scholar
  81. Xian T, Yang H, HuoYS Ma JY, Zhang HM, Su JY, Feng WJ (2016) Fabrication of Ag-decorated CaTiO3 nanoparticles and their enhanced photocatalytic activity for dye degradation. J Nanosci Nanotechnol 16:570–575CrossRefGoogle Scholar
  82. Xu Q, Feng J, Li L, Xiao Q, Wang J (2015) Hollow ZnFe2O4/TiO2 composites: high-performance and recyclable visible-light photocatalyst. J Alloys Compd 641:110–118CrossRefGoogle Scholar
  83. Yang DJ, Zheng ZF, Zhu HY, Liu HW, Gao XP (2008) Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv Mater 20:2777–2781CrossRefGoogle Scholar
  84. Ye R, Fang HB, Zheng YZ, Li N, Wang Y, Tao X (2016) Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl Mater Interfaces 8:13879–13889CrossRefGoogle Scholar
  85. Yu Y, Ren Z, Li M, Gong S, Yin S, Jiang S, Li X, Wei X, Xu G, Shen G, Han G (2015) Facile synthesis and visible photocatalytic activity of single-crystal TiO2/PbTiO3 heterostructured nanofiber composites. CrystEngComm 17:1024–1029CrossRefGoogle Scholar
  86. Yue X, Zhang J, Yan F, Wang X, Huang F (2014) A situ hydrothermal synthesis of SrTiO3/TiO2 heterostructure nanosheets with exposed (001) facets for enhancing photocatalytic degradation activity. Appl Surf Sci 319:68–74CrossRefGoogle Scholar
  87. Zhang H, Chen G, Li Y, Teng Y (2010) Electronic structure and photocatalytic properties of copper-doped CaTiO3. Int J Hydrogen Energy 3:52713–52716Google Scholar
  88. Zhang Z, Liu G, Mao Y (2013) Improved separation efficiency of photogenerated carriers for Fe2O3/SrTiO3 heterojunction semiconductor. Int J Hydrogen Energy 38:9349–9354CrossRefGoogle Scholar
  89. Zhang G, Gang L, Wang L, Irvine JTS (2016a) Inorganic perovskite photocatalysts for solar energy utilization. Chem Soc Rev 45:5951–5984CrossRefGoogle Scholar
  90. Zhang Q, Huang Y, Xu L, Cao J, Ho W, Lee SC (2016b) Visible-light-active plasmonic Ag-SrTiO3 nanocomposites for the degradation of NO in air with high selectivity. ACS Appl Mater Interfaces 8:4165–4174CrossRefGoogle Scholar
  91. Zhao B, Lin L, He D (2013) Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment. J Mater Chem A 1:1659–1668CrossRefGoogle Scholar
  92. Zhu W, Han D, Niu L, Wu T, Guan H (2016) Z-scheme Si/MgTiO3 porous heterostructures: noble metal and sacrificial agent free photocatalytic hydrogen evolution. Int J Hydrogen Energy 41:14713–14720CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Soumyashree Pany
    • 1
  • Amtul Nashim
    • 1
  • Kulamani Parida
    • 1
    Email author
  1. 1.Centre for Nano Science and Nano Technology, Institute of Technical Education and ResearchSiksha ‘O’ Anusandhan UniversityBhubaneswarIndia

Personalised recommendations