Advertisement

Introduction of Nanomaterials for Photocatalysis

  • Diana Vanda Wellia
  • Yuly Kusumawati
  • Lina Jaya Diguna
  • Muhamad Ikhlasul AmalEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

This introductory chapter discusses the rapid development of nanotechnology for the application of visible light-induced photocatalysis, which is driven by the unique material properties arising from the nanoscale dimensions. It includes the description of the carbon-based nanomaterials developed first in the early development such as fullerene, carbon nanotube, and graphene . Conductive polymers were then described as photocatalysts with different dimensional nanostructures. Moreover, semiconductors were presented as potential materials for photocatalysis. For the practical visible light applications, photocatalysts need to be modified either by narrowing the band gap or by inhibiting the recombination of charge carriers via the formation of heterojunction nanocomposites. As the focus of this book, nanocomposites have been reported as a promising strategy for high-activity visible light-driven photocatalysis. This chapter is also complemented with some examples of industrial applications of photocatalysis for practical use.

Keywords

Visible light-induced photocatalyst Photocatalysis Nanocomposite Nanoparticle Nanomaterial 

References

  1. Agrios AG, Pichat P (2005) State of the art and perspectives on materials and applications of photocatalysis over TiO2. J Appl Electrochem 35:655–663CrossRefGoogle Scholar
  2. Asiltürk M, Sayilkan F, Arpac E (2009) Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. J Photochem Photobiol A Chem 203:64–71CrossRefGoogle Scholar
  3. Attarian SM (2008) Effective coordination number model for the size dependency of physical properties of nanocrystals. J Phys Condens Matter 20:325237CrossRefGoogle Scholar
  4. Banerjee S, Dionysios DD, Pilai SC (2015) Self-Cleaning Applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428CrossRefGoogle Scholar
  5. Binnig G, Rohrer H (1987) Scanning tunneling microscopy—from birth to adolescence. Rev Mod Phys 59:615–625Google Scholar
  6. Biswas S, Hossain MF, Takahashi T, Kubota Y, Fujishima A (2008) Photocatalytic activity of high-vacuum annealed CdS/TiO2 thin film. Thin Solid Films 516:7313–7317CrossRefGoogle Scholar
  7. Briggs JB, Miller GP (2006) Fullerene–acene chemistry: a review. Comptes Rendus Chim 9:916–927CrossRefGoogle Scholar
  8. Cao L, Sahu S, Anilkumar P, Bunker CE, Xu J, Fernando KAS, Wang P, Guliants EA, Tackett KN, Sun Y-P (2011) Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J Am Chem Soc 13:4754–4757CrossRefGoogle Scholar
  9. Cao S-W, Liu X-F, Yuan Y-P, Zhang Z-Y, Liao Y-S, Fang J, Loo SCJ, Sum TC, Xue C (2013a) Solar-to-fuels conversion Over In2O3/g-C3N4 Hybrid photocatalysts. Appl Catal B 147:940–946CrossRefGoogle Scholar
  10. Cao S-W, Yuan Y-P, Fang J, Shahjamali MM, Boey FYC, Barber J, Loo SCJ, Xue C (2013b) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrogen Energy 38:1258–1266CrossRefGoogle Scholar
  11. Castro-Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRefGoogle Scholar
  12. Celik E, Yildiz AY, Azem NFA, Tanoglu M, Toparli M, Emrullahoglu OF, Ozdemir I (2006) Preparation and characterization of Fe2O3–TiO2 thin films on glass substrate for photocatalytic applications. Mater Sci Eng B 129:193–199CrossRefGoogle Scholar
  13. Chang WJ (2003) Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectron Eng 65:239–246CrossRefGoogle Scholar
  14. Chang WJ, Fang TH (2003) Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation. J Phys Chem Solids 64:1279–1283CrossRefGoogle Scholar
  15. Chen H, Zhao L, Xiang Y, He Y, Song G, Wang X, Liang F (2015) A novel Zn-TiO/C@SiO nanoporous material on rice husk for photocatalytic applications under visible light, Desalin Water Treat 57:1–11. (http://dx.doi.org/10.1080/19443994.2015.1035339)
  16. Chiang CK, Fincher CR Jr, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Electrical conductivity in doped polyacetylene. Phy Rev Lett 39:1098–1101CrossRefGoogle Scholar
  17. Deng Q, Duan X, Ng DHL, Tang H, Yang Y, Kong M, Wu Z, Cai W, Wang G (2012) Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl Mater Interfaces 4(11):6030–6037Google Scholar
  18. Ding Z, Chen X, Antonietti M, Wang X (2011) Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. Chemsuschem 4:274–281Google Scholar
  19. Drew KG, Girishkumar G, Vinodgopal K, Kamat PV (2005) Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J Phys Chem B 109:11851–11857CrossRefGoogle Scholar
  20. Fan J, Liu S, Yu J (2012) Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J Mater Chem 22(33):17027Google Scholar
  21. Fernando KAS, Sahu S, Liu Y, Lewis WK, Guliants EA, Jafariyan A, Wang P, Bunker CE, Sun Y-P (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interfaces 7:8363–8376CrossRefGoogle Scholar
  22. Geckeler KE, Samal S (1999) Syntheses and properties of macromolecular fullerenes, a review. Polym Int 48:743–757CrossRefGoogle Scholar
  23. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183CrossRefGoogle Scholar
  24. Ghosh S, Kouamé NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert PH, Remita H (2015) Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater 14:505–511CrossRefGoogle Scholar
  25. Gong J, Liang J, Sumathy K (2012) Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew Sustain Energy Rev 16:5848–5860CrossRefGoogle Scholar
  26. Greene R, Street G, Suter L (1975) Superconductivity in polysulfur nitride (SN)x. Phys Rev Lett 34:8–10CrossRefGoogle Scholar
  27. Guisbiers G, Buchaillot L (2008) Size and shape effects on creep and diffusion at the nanoscale. Nanotechnology 19:435701CrossRefGoogle Scholar
  28. Heer WA, Châtelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180CrossRefGoogle Scholar
  29. Ho W, Yu JC, Lee S (2006) Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J Solid State Chem 179:1171–1176CrossRefGoogle Scholar
  30. Hong X, Wang Z, Cai W, Lu F, Zhang J, Yang Y, Ma N, Liu Y (2005) Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater 17:1548–1552CrossRefGoogle Scholar
  31. Hosni M, Kusumawati Y, Farhat S, Jouini N, Pauporté T (2014) Effects of oxide nanoparticle size and shape on electronic structure, charge transport, and recombination in dye-sensitized solar cell photoelectrodes. J Phys Chem C 118:16791–16798CrossRefGoogle Scholar
  32. Jia L, Wu C, Han S, Yao N, Li Y, Li Z, Chi B, Pu J, Jian L (2011) Theoretical study on the electronic and optical properties of (N, Fe)-codoped anatase TiO2 photocatalyst. J Alloy Compd 509:6067–6071CrossRefGoogle Scholar
  33. Jiang W, Chen J, Ma B, Wang Z (2014) Surface effects on magnetic and thermodynamic properties in nanoscale multilayer ferrimagnetic films. Phys E Low-Dimens Syst Nanostruct 61:101–106CrossRefGoogle Scholar
  34. Kamegawa T, Shimizu Y, Yamashita H (2012) Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposites coating of TiO2 and polytetrafluoroethylene. Adv Mater 24(27):2697–3700CrossRefGoogle Scholar
  35. Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Kshnyakin V, Khalyavka T (2013) A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO2 doped with transition metal cations. J Solid State Chem 198:511–519Google Scholar
  36. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2(3):637–644Google Scholar
  37. Khan MM, Al-Mayouf SFAA (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 12:462–464CrossRefGoogle Scholar
  38. Khan ME, Khan MM, Cho MH (2016a) Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J Chem 39:8121–8129CrossRefGoogle Scholar
  39. Khan ME, Khan MM, Cho MH (2016b) Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Adv 6:20824–20833CrossRefGoogle Scholar
  40. Kim KD, Tai WS, Kim YD, Cho SJ, Bae IS, Boo JH, Lee B-C, Yang K-H, pack O-K (2009) Change in water contact angle of carbon contaminated TiO surfaces by high-energy electron beam. B Kor Chem Soc 30(5):1067–1070Google Scholar
  41. Kim MJ, Kim K-D, Tai WS, Seo HO, Luo Y, Kim YD, Lee BC, Park OK (2010) Enhancement of photocatalytic activity of TiO2 by high-energy electron-beam treatment under atmospheric pressure. Catal Lett 135(1–2):57–61Google Scholar
  42. Kusumawati Y, Martoprawiro MA, Pauporté TH (2014) Effects of graphene in graphene/TiO composite flms applied to solar cell photoelectrode. J Phys Chemi C 118(19):9974–9981Google Scholar
  43. Lee HY, Lan WY, Tseng TY, Hsu D, Chang YM, Lin JG (2009) Optical control of phase transformation in Fe-doped TiO2 nanoparticles. Nanotechnology 20:315702–315706CrossRefGoogle Scholar
  44. Li Y, Ding Y (2010) Porous AgCl/Ag nanocomposites with enhanced visible light photocatalytic properties. J Phys Chem C 114(7):3175–3179Google Scholar
  45. Li X, Chang WC, Chao YJ, Wang R, Chang M (2004) Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett 4:613–617CrossRefGoogle Scholar
  46. Li XH, Zhang J, Chen X, Fischer A, Thomas A, Antonietti M, Wang X (2011) Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion. Chem Mater 23:4344–4348CrossRefGoogle Scholar
  47. Li H, Hu H, Bao C, Guo F, Zhang X, Liu X, Hua J, Tan J, Wang A, Zhou H, Yang B, Qu Y, Liu X (2016) Forming heterojunction: an effective strategy to enhance the photocatalytic efficiency of a new metal-free organic photocatalyst for water splitting. Scientific Reports 6:29327CrossRefGoogle Scholar
  48. Lim SY, Shen W, Gao Z (2014) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381CrossRefGoogle Scholar
  49. Lin H, Deng W, Zhou T, Ning S, Long J, Wang X (2015) Iodine modified nanocrsytalline titania for photo-catalytic antibacterial application under visible light illumination. Appl Catal B Environ 176–177:36–43CrossRefGoogle Scholar
  50. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  51. Liqiang J, Xiaojun S, Jing S, Weimin C, Zili X, Yaoguo D, Honggang F (2003) Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol Energy Mater Sol Cells 79:133–151CrossRefGoogle Scholar
  52. Liu G, Niu P, Sun C, Smith SD, Chen Z, Lu GQ, Cheng HM (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648CrossRefGoogle Scholar
  53. Liu R, Huang H, Li H, Liu Y, Zhong J, Li Y, Zhang S, Kang Z (2014) Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal. 4:328–336CrossRefGoogle Scholar
  54. Long R, English NJ (2010) First-principles calculation of synergistic (N, P)-codoping effects on the visible-light photocatalytic activity of anatase TiO2. J Phys Chem C 114:11984–11990CrossRefGoogle Scholar
  55. López SM, Hidalgo MC, Navío JA, Colón G (2011) J Hazard Mater 185:1425–1434CrossRefGoogle Scholar
  56. Luc W, Jiao F (2016) Synthesis of nanoporous metals, oxides, carbides, and sulfides: beyond nanocasting. Acc Chem Res 49(7):1351–1358Google Scholar
  57. Matos J, Garcia A, Zhao L, Titirici MM (2010) Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. J Appl Electrochem 35:655–663Google Scholar
  58. Namazu T, Isono Y, Tanaka T (2000) Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J Microelectromech Syst 9:450–459CrossRefGoogle Scholar
  59. Omar A, Abdullah H (2014) Electron transport analysis in zinc oxide-based dye-sensitized solar cells: a review. Renew Sustain Energy Rev 31:149–157CrossRefGoogle Scholar
  60. Pan JH, Lee WI (2006) Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties. Chem Mater 18:847–853CrossRefGoogle Scholar
  61. Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ 95:355–361CrossRefGoogle Scholar
  62. Qi WH, Wang MP, Zhou M, Hu WY (2005) Surface-area-difference model for thermodynamic properties of metallic nanocrystals. J Phys D: Appl Phys 38 (9):1429–1436Google Scholar
  63. Resta V, Laera AM, Piscopiello E, Capodieci L, Ferrara MC, Tapfer L (2010) Synthesis of CdS/TiO2 nanocomposites by using cadmium thiolate derivatives as unimolecular precursors. Phys Status Solidi A 207:1631–1635CrossRefGoogle Scholar
  64. Rodríguez JA, García MF (2007) Synthesis, properties and applications of oxide nanomaterials. Wiley, USACrossRefGoogle Scholar
  65. Roduner E (2006) Size matters why nanomaterials are different. Chem Soc Rev 35(7):583–592Google Scholar
  66. Saravanan R, Shankar H, Prakash T, Narayanan V, Stephen A (2011) ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater Chem Phys 125(1–2):277–280Google Scholar
  67. Saravanan R, Karthikeyen N, Gupta VK, Thirumai E, Thangdurai P, Narayanang V, Stephen A (2013) ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater Sci Eng C 33(4):2235–2244CrossRefGoogle Scholar
  68. Saravanan R, Gupta VK, Narayanan V, Stephen A (2014) Visible light degradation of textile effluent using novel catalyst ZnO/I3-Mn2O3. J Taiwan Inst Chem Eng 45(4):1910–1917Google Scholar
  69. Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanang V, Stephen A (2015a) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126–133CrossRefGoogle Scholar
  70. Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanang V, Stephen A (2015b) ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 5:34645–34651CrossRefGoogle Scholar
  71. Shang M, Wang W, Zhang L, Sun S, Wang L, Zhou L (2009) 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances. J Phys Chem C 113:14727–14731CrossRefGoogle Scholar
  72. Somasundaram S, Chenthamarakshan CR, de Tacconi NR, Basit NA, Rajeshwar K (2006) Composite WO3/TiO2 films: Pulsed electrodeposition from a mixed bath versus sequential deposition from twin baths. Electrochem Commun 8:539–543CrossRefGoogle Scholar
  73. Sun CQ, Shi Y, Li CM, Li S, AuYeung TC (2006) Size-induced undercooling and overheating in phase transitions in bare and embedded clusters. Phys Rev B 73:75408CrossRefGoogle Scholar
  74. Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X (2012) Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat Commun 3:1139CrossRefGoogle Scholar
  75. Sun M, Ma X, Chen X, Sun Y, Cui X, Lin Y (2013) A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties. RSC Adv 4:1120–1127CrossRefGoogle Scholar
  76. Su C, Tandiana R, Tian B, Sengupta A, Tang W, Su J, Loh KP (2016) Visible-light photocatalysis of aerobic oxidation reactions using carbazolic conjugated microporous polymers. ACS Catal 6(6):3594–3599Google Scholar
  77. Thimsen E, Biswas S, Lo C, Biswas P (2009) Predicting the band structure of mixed transition metal oxides: theory and experiment. J Phys Chem C 113:2014–2021CrossRefGoogle Scholar
  78. Tobaldi DM, Piccirillo C, Rozman N, Pullar RC, Seabra MP, Sever Škapin A, Castro PML, Labrincha JA (2016) Effects of Cu, Zn and Cu-Zn addition on the microstructure and antibacterial and photocatalytic functional properties of Cu-Zn modified TiO2 nano-heterostructures. J Photochem Photobiol A: Chem 330:44–54Google Scholar
  79. Valentin CD, Finazzi E, Pacchioni G (2008) Density functional theory and electron paramagnetic resonance study on the effect of N− F codoping of TiO2. Chem Mater 20:3706–3714CrossRefGoogle Scholar
  80. Vanithakumari SC, Nanda KK (2008) A universal relation for the cohesive energy of nanoparticles. Phys Lett A 372:6930–6934CrossRefGoogle Scholar
  81. Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV (2015) A tunable azine covalent organic framework platform for visible light-induces hydrogen generation. Nat Commun 6:8508CrossRefGoogle Scholar
  82. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14CrossRefGoogle Scholar
  83. Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M (2009a) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681CrossRefGoogle Scholar
  84. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009b) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefGoogle Scholar
  85. Wang Y, Di Y, Antonietti M, Li H, Chen X, Wang X (2010) Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem Mater 22:5119–5121CrossRefGoogle Scholar
  86. Wang H, Leonard SL, Hu YH (2012) Promoting effect of graphene on dye-sensitized solar cells. Ind Eng Chem Res 51(32):10613–10620Google Scholar
  87. Wu KR, Hung CH (2009) Characterization of N, C-codoped TiO2 films prepared by reactive DC magnetron sputtering. Appl Surf Sci 256:1595–1603CrossRefGoogle Scholar
  88. Xia L, Bai J, Li J, Zeng Q, Li X, Zou BX (2016) A highly efficient BiVO4/WO3/W heterojunction photoanode for visible light responsive dual photoelectrode photocatalytic fuel cell. Appl Catal B Environ 183:224–230CrossRefGoogle Scholar
  89. Xiao J, Chen W, Wang F, Du J (2013) Polymer/TiO hybrid nanoparticles with highly effective UV-screening but eliminated photocatalytic activity. Macromolecules 46(2):375–383Google Scholar
  90. Xu C, Wei X, Ren Z, Wang Y, Xu G, Shen G, Han G (2009) Solvothermal preparation of Bi2 WO6 nanocrystals with improved visible light photocatalytic activity. Mater Lett 26:2194–2197CrossRefGoogle Scholar
  91. Xu J, Luo L, Xiao G, Zhang Z, Lin H, Wang X, Long J (2014) Layered C N S polymer/graphene hybrids as metal-free catalysts for selective photocatalytic oxidation of benzylic alcohols under visible light. ACS Catal 4(9):3302–3306Google Scholar
  92. Yan H, Huang Y (2011) Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light. Chem Commun 47:4168–4170CrossRefGoogle Scholar
  93. Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901CrossRefGoogle Scholar
  94. Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K (1985) Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J Chem Soc Chem Commun 8:474–475CrossRefGoogle Scholar
  95. Yang CC, Jiang Q (2005) Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Mater 53:3305–3311CrossRefGoogle Scholar
  96. Yang CC, Mai YW (2014) Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mater Sci Eng R Rep 79:1–40CrossRefGoogle Scholar
  97. Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816CrossRefGoogle Scholar
  98. Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B Environ 90:595–602CrossRefGoogle Scholar
  99. Yuan Z, Zhang J, Lin B, Li J (2007) Effect of metal ion dopants on photochemical properties of anatase TiO2 films synthesized by a modified sol-gel method. Thin Solid Films 515:7091–7095CrossRefGoogle Scholar
  100. Zhang X, Lei L (2008) One step preparation of visible-light responsive Fe–TiO2 coating photocatalysts by MOCVD. Mater Lett 62:895–897CrossRefGoogle Scholar
  101. Zhang S, Song L (2009) Preparation of visible-light-active carbon and nitrogen codoped titanium dioxide photocatalysts with the assistance of aniline. Catal Commun 10:1725–1729CrossRefGoogle Scholar
  102. Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21:4087–4108CrossRefGoogle Scholar
  103. Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, Fu X, Antonietti M, Wang X (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49:441–444CrossRefGoogle Scholar
  104. Zhang N, Yang MQ, Tang ZR, Xu YJ (2013) CdS-Graphene nanocomposites as visible light photocatalysis for redox reaction in water: a green route for selective transformation and environmental remediation. J Catal 303:60–69. (https://doi.org/10.1016/j.jcat.2013.02.026)
  105. Zhang Y, Mao F, Yan H, Liu K, Cao H, Wu J, Xiao D (2015) A polymer-metal-polymer-metal heterostructure for enhanced photocatalytic hydrogen production. J Mater Chem A 3:109–115CrossRefGoogle Scholar
  106. Zhao W, Ma WH, Chen CC, Zhao JC, Shuai ZG (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J Am Chem Soc 16:4782–4783CrossRefGoogle Scholar
  107. Zhou L, Tan X, Zhao L, Sun M (2007) Photocatalytic degradation of NOx over platinum and nitrogen codoped titanium dioxide under visible light irradiation. Collect Czech Chem Commun 72:379–391CrossRefGoogle Scholar
  108. Zhou Y, Krumeich F, Heel A, Patzke GR (2010) One-step hydrothermal coating approach to photocatalytically active oxide composites. Dalton Trans 39:6043–6048CrossRefGoogle Scholar
  109. Zouzelka R, Kusumawati Y, Remzova M, Rathousky J, Pauporté T (2016) Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation. J Hazard Mater 317:52–59CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Diana Vanda Wellia
    • 1
  • Yuly Kusumawati
    • 2
  • Lina Jaya Diguna
    • 3
  • Muhamad Ikhlasul Amal
    • 4
    Email author
  1. 1.Chemistry DepartmentAndalas UniversityPadangIndonesia
  2. 2.Chemistry DepartmentSepuluh Nopember Institute of TechnologySurabayaIndonesia
  3. 3.Department of Renewable Energy EngineeringPrasetiya Mulya UniversityTangerangIndonesia
  4. 4.Development and Application Unit for Biocompatible Implant Material in OrthopedicsIndonesian Institute of SciencesBandungIndonesia

Personalised recommendations