Skip to main content

The Secrets of T Cell Polarization

  • Chapter
  • First Online:
  • 3216 Accesses

Abstract

The aim of chemotherapy and radiotherapy is to eliminate tumor cells. While the outcomes of these cytotoxic treatments were previously attributed to their direct effects on tumor cells, it is now clear that the host’s immune system, and specifically T cells, also contributes to the success of these therapies. These observations, along with the demonstrated clinical successes of anticancer agents targeting T cells have prompted scientists to revisit the mechanisms responsible for T cell polarization. In 1986, Mossman and Coffman have reported the ability of naive CD4 T cells to differentiate into specialized variants, designed as Th1 and Th2 and differing in their profiles of lymphokine activities. Since then, it was shown that both CD4 and CD8 T cells could differentiate in a myriad of effector T cell subsets that have a profound impact on adaptive immunity. In this chapter, we review the molecular mechanisms responsible for the differentiation of T cells and their relevance for human disease.

This is a preview of subscription content, log in via an institution.

References

  1. Gao Y, et al. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med. 2003;198:433–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Borg C, et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest. 2004;114:379–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Taieb J, et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med. 2006;12:214–9.

    Article  CAS  PubMed  Google Scholar 

  4. Crowe NY, Smyth MJ, Godfrey DI. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med. 2002;196:119–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wiley SR, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3:673–82.

    Article  CAS  PubMed  Google Scholar 

  6. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol. 2002;2:735–47.

    Article  CAS  PubMed  Google Scholar 

  7. Shankaran V, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.

    Article  CAS  PubMed  Google Scholar 

  8. Harty JT, Tvinnereim AR, White DW. CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol. 2000;18:275–308.

    Article  CAS  PubMed  Google Scholar 

  9. Nakayama E, Uenaka A. Effect of in vivo administration of Lyt antibodies. Lyt phenotype of T cells in lymphoid tissues and blocking of tumor rejection. J Exp Med. 1985;161:345–55.

    Article  CAS  PubMed  Google Scholar 

  10. Smyth MJ, et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med. 2000;192:755–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  CAS  PubMed  Google Scholar 

  12. Koebel CM, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450:903–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ghiringhelli F, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15:1170–8.

    Article  CAS  PubMed  Google Scholar 

  14. Mattarollo SR, et al. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 2011;71:4809–20.

    Article  CAS  PubMed  Google Scholar 

  15. Apetoh L, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–9.

    Article  CAS  PubMed  Google Scholar 

  16. Apetoh L, et al. Consensus nomenclature for CD8 T cell phenotypes in cancer. Oncoimmunology. 2015;4:e998538.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28:690–714.

    Article  CAS  PubMed  Google Scholar 

  18. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045.

    Article  CAS  PubMed  Google Scholar 

  19. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000;12:1539–46.

    Article  CAS  PubMed  Google Scholar 

  20. Todryk S, et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol. 1999;163:1398–408.

    CAS  PubMed  Google Scholar 

  21. Zitvogel L, et al. Immune response against dying tumor cells. Adv Immunol. 2004;84:131–79.

    Article  CAS  PubMed  Google Scholar 

  22. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  CAS  PubMed  Google Scholar 

  23. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 1998;392:86–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ronchetti A, et al. Role of antigen-presenting cells in cross-priming of cytotoxic T lymphocytes by apoptotic cells. J Leukoc Biol. 1999;66:247–51.

    CAS  PubMed  Google Scholar 

  25. Lang KS, et al. Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J Clin Invest. 2006;116:2456–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Colonna M. Toll-like receptors and IFN-alpha: partners in autoimmunity. J Clin Invest. 2006;116:2319–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–12.

    Article  CAS  PubMed  Google Scholar 

  28. Klebanoff CA, Gattinoni L, Restifo NP. Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother. 2012;35:651–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Crompton JG, Sukumar M, Restifo NP. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy. Immunol Rev. 2014;257:264–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–57.

    CAS  PubMed  Google Scholar 

  31. Apetoh L, et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol. 2010;11:854–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lu Y, et al. Th9 cells promote antitumor immune responses in vivo. J Clin Invest. 2012;122:4160–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Purwar R, et al. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med. 2012;18:1248–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Vegran F, et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol. 2014;15:758–66.

    Article  CAS  PubMed  Google Scholar 

  35. Ciofani M, et al. A validated regulatory network for Th17 cell specification. Cell. 2012;151:289–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Durant L, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32:605–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Elo LL, et al. Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. Immunity. 2010;32:852–62.

    Article  CAS  PubMed  Google Scholar 

  38. Wei L, et al. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity. 2010;32:840–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Yu D, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 2009;31:457–68.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng Y, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. 2007;445:936–40.

    Article  CAS  PubMed  Google Scholar 

  41. van Panhuys N, Klauschen F, Germain RN. T-cell-receptor-dependent signal intensity dominantly controls CD4(+) T cell polarization in vivo. Immunity. 2014;41:63–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yamane H, Paul WE. Early signaling events that underlie fate decisions of naive CD4(+) T cells toward distinct T-helper cell subsets. Immunol Rev. 2013;252:12–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol. 2009;10:375–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Iezzi G, et al. CD40-CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc Natl Acad Sci U S A. 2009;106:876–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tao X, Constant S, Jorritsma P, Bottomly K. Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J Immunol. 1997;159:5956–63.

    CAS  PubMed  Google Scholar 

  46. Rulifson IC, Sperling AI, Fields PE, Fitch FW, Bluestone JA. CD28 costimulation promotes the production of Th2 cytokines. J Immunol. 1997;158:658–65.

    CAS  PubMed  Google Scholar 

  47. Ylikoski E, et al. IL-12 up-regulates T-bet independently of IFN-gamma in human CD4+ T cells. Eur J Immunol. 2005;35:3297–306.

    Article  CAS  PubMed  Google Scholar 

  48. Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol. 2002;2:933–44.

    Article  CAS  PubMed  Google Scholar 

  49. Ouyang W, et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity. 1998;9:745–55.

    Article  CAS  PubMed  Google Scholar 

  50. Usui T, et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med. 2006;203:755–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Usui T, Nishikomori R, Kitani A, Strober W. GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity. 2003;18:415–28.

    Article  CAS  PubMed  Google Scholar 

  52. Thieu VT, et al. Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity. 2008;29:679–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Djuretic IM, et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol. 2007;8:145–53.

    Article  CAS  PubMed  Google Scholar 

  54. Mullen AC, et al. Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat Immunol. 2002;3:652–8.

    Article  CAS  PubMed  Google Scholar 

  55. Hwang ES, Szabo SJ, Schwartzberg PL, Glimcher LH. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science. 2005;307:430–3.

    Article  CAS  PubMed  Google Scholar 

  56. Szabo SJ, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100:655–69.

    Article  CAS  PubMed  Google Scholar 

  57. Lazarevic V, et al. T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORgammat. Nat Immunol. 2011;12:96–104.

    Article  CAS  PubMed  Google Scholar 

  58. Villarino AV, Gallo E, Abbas AK. STAT1-activating cytokines limit Th17 responses through both T-bet-dependent and -independent mechanisms. J Immunol. 2010;185:6461–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Gokmen MR, et al. Genome-wide regulatory analysis reveals that T-bet controls Th17 lineage differentiation through direct suppression of IRF4. J Immunol. 2013;191:5925–32.

    Article  CAS  PubMed  Google Scholar 

  60. Oestreich KJ, Huang AC, Weinmann AS. The lineage-defining factors T-bet and Bcl-6 collaborate to regulate Th1 gene expression patterns. J Exp Med. 2011;208:1001–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Zhu J, et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol. 2004;5:1157–65.

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka S, et al. The enhancer HS2 critically regulates GATA-3-mediated Il4 transcription in T(H)2 cells. Nat Immunol. 2011;12:77–85.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang DH, Yang L, Ray A. Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J Immunol. 1998;161:3817–21.

    CAS  PubMed  Google Scholar 

  64. Wei G, et al. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity. 2011;35:299–311.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Horiuchi S, et al. Genome-wide analysis reveals unique regulation of transcription of Th2-specific genes by GATA3. J Immunol. 2011;186:6378–89.

    Article  CAS  PubMed  Google Scholar 

  66. Jenner RG, et al. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci U S A. 2009;106:17876–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Ansel KM, et al. Deletion of a conserved Il4 silencer impairs T helper type 1-mediated immunity. Nat Immunol. 2004;5:1251–9.

    Article  CAS  PubMed  Google Scholar 

  68. Veldhoen M, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9:1341–6.

    Article  CAS  PubMed  Google Scholar 

  69. Perumal NB, Kaplan MH. Regulating Il9 transcription in T helper cells. Trends Immunol. 2011;32:146–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Chang HC, et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol. 2010;11:527–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Staudt V, et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity. 2010;33:192–202.

    Article  CAS  PubMed  Google Scholar 

  72. Jabeen R, et al. Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest. 2013;123:4641–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Xiao X, et al. OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol. 2012;13:981–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Laurence A, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26:371–81.

    Article  CAS  PubMed  Google Scholar 

  75. Yang XO, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282:9358–63.

    Article  CAS  PubMed  Google Scholar 

  76. Ueda A, Zhou L, Stein PL. Fyn promotes Th17 differentiation by regulating the kinetics of RORgammat and Foxp3 expression. J Immunol. 2012;188:5247–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Yang XO, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28:29–39.

    Article  CAS  PubMed  Google Scholar 

  78. Ivanov II, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  79. Li P, et al. BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature. 2012;490:543–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wong LY, Hatfield JK, Brown MA. Ikaros sets the potential for Th17 lineage gene expression through effects on chromatin state in early T cell development. J Biol Chem. 2013;288:35170–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Quintana FJ, et al. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat Immunol. 2012;13:770–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Rutz S, et al. Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nat Immunol. 2011;12:1238–45.

    Article  CAS  PubMed  Google Scholar 

  83. Dang EV, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146:772–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Keerthivasan S, et al. Notch signaling regulates mouse and human Th17 differentiation. J Immunol. 2011;187:692–701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Okamoto K, et al. IkappaBzeta regulates T(H)17 development by cooperating with ROR nuclear receptors. Nature. 2010;464:1381–5.

    Article  CAS  PubMed  Google Scholar 

  86. Schraml BU, et al. The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature. 2009;460:405–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Brustle A, et al. The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol. 2007;8:958–66.

    Article  CAS  PubMed  Google Scholar 

  88. Pham D, et al. The transcription factor Twist1 limits T helper 17 and T follicular helper cell development by repressing the gene encoding the interleukin-6 receptor alpha chain. J Biol Chem. 2013;288:27423–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Kanhere A, et al. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun. 2012;3:1268.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Miao T, et al. Early growth response gene-2 controls IL-17 expression and Th17 differentiation by negatively regulating Batf. J Immunol. 2013;190:58–65.

    Article  CAS  PubMed  Google Scholar 

  91. Engel I, Zhao M, Kappes D, Taniuchi I, Kronenberg M. The transcription factor Th-POK negatively regulates Th17 differentiation in Valpha14i NKT cells. Blood. 2012;120:4524–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Chalmin F, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 2012;36:362–73.

    Article  CAS  PubMed  Google Scholar 

  93. Joshi S, et al. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol. 2011;31:3653–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Ouyang X, et al. Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation. Nat Commun. 2011;2:314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Maruyama T, et al. Control of the differentiation of regulatory T cells and T(H)17 cells by the DNA-binding inhibitor Id3. Nat Immunol. 2011;12:86–95.

    Article  CAS  PubMed  Google Scholar 

  96. Lebson L, et al. Cutting edge: the transcription factor Kruppel-like factor 4 regulates the differentiation of Th17 cells independently of RORgammat. J Immunol. 2010;185:7161–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Klotz L, et al. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med. 2009;206:2079–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Moisan J, Grenningloh R, Bettelli E, Oukka M, Ho IC. Ets-1 is a negative regulator of Th17 differentiation. J Exp Med. 2007;204:2825–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Tellier J, Nutt SL. The unique features of follicular T cell subsets. Cell Mol Life Sci. 2013;70:4771–84.

    Article  CAS  PubMed  Google Scholar 

  100. Heissmeyer V, Vogel KU. Molecular control of Tfh-cell differentiation by Roquin family proteins. Immunol Rev. 2013;253:273–89.

    Article  CAS  PubMed  Google Scholar 

  101. Liu X, Nurieva RI, Dong C. Transcriptional regulation of follicular T-helper (Tfh) cells. Immunol Rev. 2013;252:139–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Poholek AC, et al. In vivo regulation of Bcl6 and T follicular helper cell development. J Immunol. 2010;185:313–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Duckrow RB. Effect of hemodilution on regional cerebral blood flow during chronic hyperglycemia in rats. Stroke. 1990;21:1072–6.

    Article  CAS  PubMed  Google Scholar 

  104. Baumjohann D, Okada T, Ansel KM. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J Immunol. 2011;187:2089–92.

    Article  CAS  PubMed  Google Scholar 

  105. Nurieva RI, et al. Bcl6 mediates the development of T follicular helper cells. Science. 2009;325:1001–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Luthje K, et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat Immunol. 2012;13:491–8.

    Article  CAS  PubMed  Google Scholar 

  107. Huang C, Hatzi K, Melnick A. Lineage-specific functions of Bcl-6 in immunity and inflammation are mediated by distinct biochemical mechanisms. Nat Immunol. 2013;14:380–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Ma CS, et al. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood. 2012;119:3997–4008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Nurieva RI, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29:138–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Lin W, et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol. 2007;8:359–68.

    Article  CAS  PubMed  Google Scholar 

  111. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.

    Article  CAS  PubMed  Google Scholar 

  112. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.

    Article  CAS  PubMed  Google Scholar 

  113. Rudra D, et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol. 2012;13:1010–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Birzele F, et al. Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in human. Nucleic Acids Res. 2011;39:7946–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Hill JA, et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity. 2007;27:786–800.

    Article  CAS  PubMed  Google Scholar 

  116. Marson A, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007;445:931–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Gavin MA, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445:771–5.

    Article  CAS  PubMed  Google Scholar 

  118. Delgoffe GM, Bettini ML, Vignali DA. Identity crisis: it’s not just Foxp3 anymore. Immunity. 2012;37:759–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Kim HP, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med. 2007;204:1543–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Fu W, et al. A multiply redundant genetic switch ‘locks in’ the transcriptional signature of regulatory T cells. Nat Immunol. 2012;13:972–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A. 2005;102:5138–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. O’Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36:542–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. O’Shea JJ, Lahesmaa R, Vahedi G, Laurence A, Kanno Y. Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol. 2011;11:239–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Adamson AS, Collins K, Laurence A, O’Shea JJ. The current STATus of lymphocyte signaling: new roles for old players. Curr Opin Immunol. 2009;21:161–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Nguyen ML, Jones SA, Prier JE, Russ BE. Transcriptional enhancers in the regulation of T cell differentiation. Front Immunol. 2015;6:462.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Tripathi SK, Lahesmaa R. Transcriptional and epigenetic regulation of T-helper lineage specification. Immunol Rev. 2014;261:62–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Ostuni R, et al. Latent enhancers activated by stimulation in differentiated cells. Cell. 2013;152:157–71.

    Article  CAS  PubMed  Google Scholar 

  129. Vahedi G, et al. STATs shape the active enhancer landscape of T cell populations. Cell. 2012;151:981–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    Article  CAS  PubMed  Google Scholar 

  131. Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol. 2007;8:277–84.

    Article  CAS  PubMed  Google Scholar 

  132. Mittrucker HW, Visekruna A, Huber M. Heterogeneity in the differentiation and function of CD8(+) T cells. Arch Immunol Ther Exp. 2014;62:449–58.

    Article  CAS  Google Scholar 

  133. Man K, et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat Immunol. 2013;14:1155–65.

    Article  CAS  PubMed  Google Scholar 

  134. Kim MV, Ouyang W, Liao W, Zhang MQ, Li MO. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity. 2013;39:286–97.

    Article  CAS  PubMed  Google Scholar 

  135. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12:749–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Tang Y, et al. Antigen-specific effector CD8 T cells regulate allergic responses via IFN-gamma and dendritic cell function. J Aller Clin Immunol. 2012;129:1611–20, e1614.

    Google Scholar 

  137. Cho BA, et al. Characterization of effector memory CD8+ T cells in the synovial fluid of rheumatoid arthritis. J Clin Immunol. 2012;32:709–20.

    Article  CAS  PubMed  Google Scholar 

  138. Omori M, et al. CD8 T cell-specific downregulation of histone hyperacetylation and gene activation of the IL-4 gene locus by ROG, repressor of GATA. Immunity. 2003;19:281–94.

    Article  CAS  PubMed  Google Scholar 

  139. Lu Y, et al. Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc Natl Acad Sci U S A. 2014;111:2265–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Visekruna A, et al. Tc9 cells, a new subset of CD8(+) T cells, support Th2-mediated airway inflammation. Eur J Immunol. 2013;43:606–18.

    Article  CAS  PubMed  Google Scholar 

  141. Chang SY, et al. Circulatory antigen processing by mucosal dendritic cells controls CD8(+) T cell activation. Immunity. 2013;38:153–65.

    Article  CAS  PubMed  Google Scholar 

  142. Huber M, et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest. 2013;123:247–60.

    Article  CAS  PubMed  Google Scholar 

  143. Hinrichs CS, et al. Type 17 CD8+ T cells display enhanced antitumor immunity. Blood. 2009;114:596–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Hamada H, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Robb RJ, et al. Identification and expansion of highly suppressive CD8(+)FoxP3(+) regulatory T cells after experimental allogeneic bone marrow transplantation. Blood. 2012;119:5898–908.

    Article  CAS  PubMed  Google Scholar 

  146. Kim HJ, Cantor H. Regulation of self-tolerance by Qa-1-restricted CD8(+) regulatory T cells. Semin Immunol. 2011;23:446–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Tsai S, et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity. 2010;32:568–80.

    Article  CAS  PubMed  Google Scholar 

  148. Joshi NS, et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity. 2007;27:281–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Takemoto N, Intlekofer AM, Northrup JT, Wherry EJ, Reiner SL. Cutting edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J Immunol. 2006;177:7515–9.

    Article  CAS  PubMed  Google Scholar 

  150. Intlekofer AM, et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J Exp Med. 2007;204:2015–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Pipkin ME, et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity. 2010;32:79–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Intlekofer AM, et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science. 2008;321:408–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Intlekofer AM, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol. 2005;6:1236–44.

    Article  CAS  PubMed  Google Scholar 

  154. Yang CY, et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat Immunol. 2011;12:1221–9.

    Article  CAS  PubMed  Google Scholar 

  155. Cannarile MA, et al. Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat Immunol. 2006;7:1317–25.

    Article  CAS  PubMed  Google Scholar 

  156. Cui W, Liu Y, Weinstein JS, Craft J, Kaech SM. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity. 2011;35:792–805.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Shin H, et al. A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity. 2009;31:309–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Kallies A, Xin A, Belz GT, Nutt SL. Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity. 2009;31:283–95.

    Article  CAS  PubMed  Google Scholar 

  159. Rutishauser RL, et al. Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity. 2009;31:296–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Lam MT, et al. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature. 2013;498:511–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Tata JR. Signalling through nuclear receptors. Nat Rev Mol Cell Biol. 2002;3:702–10.

    Article  CAS  PubMed  Google Scholar 

  162. Ravasi T, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 2010;140:744–52.

    Article  CAS  PubMed  Google Scholar 

  163. Glasmacher E, et al. A genomic regulatory element that directs assembly and function of immune-specific AP-1-IRF complexes. Science. 2012;338:975–80.

    Article  CAS  PubMed  Google Scholar 

  164. Kurachi M, et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat Immunol. 2014;15:373–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Grusdat M, et al. IRF4 and BATF are critical for CD8(+) T-cell function following infection with LCMV. Cell Death Differ. 2014;21:1050–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Kuroda S, et al. Basic leucine zipper transcription factor, ATF-like (BATF) regulates epigenetically and energetically effector CD8 T-cell differentiation via Sirt1 expression. Proc Natl Acad Sci U S A. 2011;108:14885–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Nayar R, et al. Graded levels of IRF4 regulate CD8+ T cell differentiation and expansion, but not attrition, in response to acute virus infection. J Immunol. 2014;192:5881–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Yao S, et al. Interferon regulatory factor 4 sustains CD8(+) T cell expansion and effector differentiation. Immunity. 2013;39:833–45.

    Article  CAS  PubMed  Google Scholar 

  169. Raczkowski F, et al. The transcription factor interferon regulatory factor 4 is required for the generation of protective effector CD8+ T cells. Proc Natl Acad Sci U S A. 2013;110:15019–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Youngblood B, et al. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity. 2011;35:400–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Zediak VP, Johnnidis JB, Wherry EJ, Berger SL. Cutting edge: persistently open chromatin at effector gene loci in resting memory CD8+ T cells independent of transcriptional status. J Immunol. 2011;186:2705–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Wei G, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30:155–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Costa FF. Non-coding RNAs: new players in eukaryotic biology. Gene. 2005;357:83–94.

    Article  CAS  PubMed  Google Scholar 

  174. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD. MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008;9:839–45.

    Article  CAS  PubMed  Google Scholar 

  175. Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159–66.

    Article  CAS  PubMed  Google Scholar 

  176. Monticelli S. MicroRNAs in T helper cell differentiation and plasticity. Semin Immunol. 2013;25:291–8.

    Article  CAS  PubMed  Google Scholar 

  177. Pagani M, et al. Role of microRNAs and long-non-coding RNAs in CD4(+) T-cell differentiation. Immunol Rev. 2013;253:82–96.

    Article  CAS  PubMed  Google Scholar 

  178. Zhou X, et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med. 2008;205:1983–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Hu G, et al. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol. 2013;14:1190–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Hu R, et al. MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression. J Immunol. 2013;190:5972–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Wu T, et al. Temporal expression of microRNA cluster miR-17-92 regulates effector and memory CD8+ T-cell differentiation. Proc Natl Acad Sci U S A. 2012;109:9965–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  182. Jiang S, et al. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood. 2011;118:5487–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Navarro F, Lieberman J. Small RNAs guide hematopoietic cell differentiation and function. J Immunol. 2010;184:5939–47.

    Article  CAS  PubMed  Google Scholar 

  184. Takahashi H, et al. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol. 2012;13:587–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Liu YL, et al. MicroRNA-21 and -146b are involved in the pathogenesis of murine viral myocarditis by regulating TH-17 differentiation. Arch Virol. 2013;158:1953–63.

    Article  CAS  PubMed  Google Scholar 

  186. Mycko MP, et al. MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proc Natl Acad Sci U S A. 2012;109:E1248–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Wu H, et al. miRNA profiling of naive, effector and memory CD8 T cells. PloS One. 2007;2:e1020.

    Google Scholar 

  188. Rossi RL, et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol. 2011;12:796–803.

    Article  CAS  PubMed  Google Scholar 

  189. Bellon M, Lepelletier Y, Hermine O, Nicot C. Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood. 2009;113:4914–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Belver L, Papavasiliou FN, Ramiro AR. MicroRNA control of lymphocyte differentiation and function. Curr Opin Immunol. 2011;23:368–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Liu J, et al. MiR-142-3p attenuates the migration of CD4(+) T cells through regulating actin cytoskeleton via RAC1 and ROCK2 in arteriosclerosis obliterans. PLoS One. 2014;9:e95514.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Salaun B, et al. Differentiation associated regulation of microRNA expression in vivo in human CD8+ T cell subsets. J Transl Med. 2011;9:44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Huang B, et al. miR-142-3p restricts cAMP production in CD4+CD25- T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep. 2009;10:180–5.

    Article  CAS  PubMed  Google Scholar 

  194. Starczynowski DT, et al. MicroRNA-146a disrupts hematopoietic differentiation and survival. Exp Hematol. 2011;39:167–78, e164.

    Google Scholar 

  195. Lu LF, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010;142:914–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Kuchen S, et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity. 2010;32:828–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  197. Ghisi M, et al. Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood. 2011;117:7053–62.

    Article  CAS  PubMed  Google Scholar 

  198. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A. 2007;104:7080–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Monticelli S, et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 2005;6:R71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Banerjee A, Schambach F, DeJong CS, Hammond SM, Reiner SL. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. Eur J Immunol. 2010;40:225–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Tsitsiou E, Lindsay MA. microRNAs and the immune response. Curr Opin Pharmacol. 2009;9:514–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10:111–22.

    Article  CAS  PubMed  Google Scholar 

  203. Laufer TM. T-cell sensitivity: a microRNA regulates the sensitivity of the T-cell receptor. Immunol Cell Biol. 2007;85:346–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Xue Q, et al. Human activated CD4(+) T lymphocytes increase IL-2 expression by downregulating microRNA-181c. Mol Immunol. 2011;48:592–9.

    Article  CAS  PubMed  Google Scholar 

  205. Stittrich AB, et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol. 2010;11:1057–62.

    Article  CAS  PubMed  Google Scholar 

  206. Wang H, et al. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol. 2014;15:393–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  207. Du C, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10:1252–9.

    Article  CAS  PubMed  Google Scholar 

  208. Sharma S, et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci U S A. 2011;108:11381–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 2008;121:939–46.

    Article  CAS  PubMed  Google Scholar 

  210. Collier SP, Collins PL, Williams CL, Boothby MR, Aune TM. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol. 2012;189:2084–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Vigneau S, Rohrlich PS, Brahic M, Bureau JF. Tmevpg1, a candidate gene for the control of Theiler’s virus persistence, could be implicated in the regulation of gamma interferon. J Virol. 2003;77:5632–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. Vivien L, Benoist C, Mathis D. T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo. Int Immunol. 2001;13:763–8.

    Article  CAS  PubMed  Google Scholar 

  213. Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol. 2000;1:426–32.

    Article  CAS  PubMed  Google Scholar 

  214. Macintyre AN, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20:61–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Sinclair LV, et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. 2013;14:500–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. Wang R, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  217. Hatziapostolou M, Polytarchou C, Iliopoulos D. miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab. 2013;24:361–73.

    Article  CAS  PubMed  Google Scholar 

  218. Finlay DK, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med. 2012;209:2441–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev. 2012;249:43–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Shi LZ, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208:1367–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Waickman AT, Powell JD. Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells. J Immunol. 2012;188:4721–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Pollizzi KN, Powell JD. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 2015;36:13–20.

    Article  CAS  PubMed  Google Scholar 

  223. Kim SG, Buel GR, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells. 2013;35:463–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  224. Chen L, et al. Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Lab Invest. 2010;90:762–73.

    Google Scholar 

  225. Chantranupong L, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell. 2016;165:153–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. Fernandez-Ramos AA, Poindessous V, Marchetti-Laurent C, Pallet N, Loriot MA. The effect of immunosuppressive molecules on T-cell metabolic reprogramming. Biochimie. 2016;127:23–36.

    Article  CAS  PubMed  Google Scholar 

  227. Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol. 2012;52:381–400.

    Article  CAS  PubMed  Google Scholar 

  228. Boukouris AE, Zervopoulos SD, Michelakis ED. Metabolic enzymes moonlighting in the nucleus: metabolic regulation of Gene transcription. Trends Biochem Sci. 2016;41:712–30.

    Article  CAS  PubMed  Google Scholar 

  229. Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 2015;36:81–91.

    Article  CAS  PubMed  Google Scholar 

  230. Berod L, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20:1327–33.

    Article  CAS  PubMed  Google Scholar 

  231. Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5:844–52.

    Article  CAS  PubMed  Google Scholar 

  232. Rampoldi F, et al. Immunosuppression and aberrant T cell development in the absence of N-Myristoylation. J Immunol. 2015;195:4228–43.

    Article  CAS  PubMed  Google Scholar 

  233. Resh MD. Covalent lipid modifications of proteins. Curr Biol. 2013;23:R431–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  234. Rubio I, et al. TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras. J Immunol. 2010;185:3536–43.

    Article  CAS  PubMed  Google Scholar 

  235. Sena LA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38:225–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  236. Fracchia KM, Pai CY, Walsh CM. Modulation of T cell metabolism and function through calcium Signaling. Front Immunol. 2013;4:324.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  237. Junger WG. Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol. 2011;11:201–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  238. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta. 2010;1797:907–12.

    Article  CAS  PubMed  Google Scholar 

  239. Schwindling C, Quintana A, Krause E, Hoth M. Mitochondria positioning controls local calcium influx in T cells. J Immunol. 2010;184:184–90.

    Article  CAS  PubMed  Google Scholar 

  240. Quintana A, et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci U S A. 2007;104:14418–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  241. Ron-Harel N, et al. Mitochondrial biogenesis and proteome Remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 2016;24:104–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  242. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  243. Delgoffe GM, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  244. Battaglia M, et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol. 2006;177:8338–47.

    Article  CAS  PubMed  Google Scholar 

  245. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.

    Article  CAS  PubMed  Google Scholar 

  246. Sasaki CY, et al. P((7)(0)S(6)K(1)) in the TORC1 pathway is essential for the differentiation of Th17 cells, but not Th1, Th2, or Treg cells in mice. Eur J Immunol. 2016;46:212–22.

    Article  CAS  PubMed  Google Scholar 

  247. Kurebayashi Y, et al. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma. Cell Rep. 2012;1:360–73.

    Article  CAS  PubMed  Google Scholar 

  248. Wu X, et al. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway. Biochem Pharmacol. 2015;96:323–36.

    Article  CAS  PubMed  Google Scholar 

  249. Yang K, et al. T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. Immunity. 2013;39:1043–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Delgoffe GM, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12:295–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  251. Zeng H, et al. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature. 2013;499:485–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Procaccini C, et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity. 2010;33:929–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  253. De Rosa V, et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity. 2007;26:241–55.

    Article  CAS  PubMed  Google Scholar 

  254. Wallin JD, et al. Intravenous nicardipine for the treatment of severe hypertension. A double-blind, placebo-controlled multicenter trial. Arch Intern Med. 1989;149:2662–9.

    Article  CAS  PubMed  Google Scholar 

  255. Wei J, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol. 2016;17:277–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  256. Yu L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465:942–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  257. Pollizzi KN, et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat Immunol. 2016;17:704–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  258. Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology. 2003;144:5179–83.

    Article  CAS  PubMed  Google Scholar 

  259. Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003;546:113–20.

    Article  CAS  PubMed  Google Scholar 

  260. Zhao D, et al. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int J Cancer. 2015;136:2556–65.

    Article  CAS  PubMed  Google Scholar 

  261. Kang KY, et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol. 2013;16:85–92.

    Article  CAS  PubMed  Google Scholar 

  262. Blagih J, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity. 2015;42:41–54.

    Article  CAS  PubMed  Google Scholar 

  263. Mayer A, Denanglaire S, Viollet B, Leo O, Andris F. AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol. 2008;38:948–56.

    Article  CAS  PubMed  Google Scholar 

  264. Chang CH, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  265. Navratilova J, Hankeova T, Benes P, Smarda J. Low-glucose conditions of tumor microenvironment enhance cytotoxicity of tetrathiomolybdate to neuroblastoma cells. Nutr Cancer. 2013;65:702–10.

    Article  CAS  PubMed  Google Scholar 

  266. Kim Y, Lin Q, Glazer PM, Yun Z. Hypoxic tumor microenvironment and cancer cell differentiation. Curr Mol Med. 2009;9:425–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  267. Rolf J, et al. AMPKalpha1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol. 2013;43:889–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  268. Raha S, et al. Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease. Eur J Immunol. 2016;46:2233–8.

    Article  CAS  PubMed  Google Scholar 

  269. Lee J, et al. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  270. Endo Y, et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 2015;12:1042–55.

    Article  CAS  PubMed  Google Scholar 

  271. Wang C, et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell. 2015;163:1413–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  272. Hu X, et al. Sterol metabolism controls T(H)17 differentiation by generating endogenous RORgamma agonists. Nat Chem Biol. 2015;11:141–7.

    Article  CAS  PubMed  Google Scholar 

  273. Beier UH, et al. Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB J. 2015;29:2315–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  274. Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  275. Yusuf I, Fruman DA. Regulation of quiescence in lymphocytes. Trends Immunol. 2003;24:380–6.

    Article  CAS  PubMed  Google Scholar 

  276. Buck MD, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166:63–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  277. Dimeloe S, et al. The immune-metabolic basis of effector memory CD4+ T cell function under hypoxic conditions. J Immunol. 2016;196:106–14.

    Article  CAS  PubMed  Google Scholar 

  278. O’Sullivan D, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 2014;41:75–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  279. van der Windt GJ, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci U S A. 2013;110:14336–41.

    Article  PubMed Central  PubMed  Google Scholar 

  280. Doedens AL, et al. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol. 2013;14:1173–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  281. Cham CM, Driessens G, O’Keefe JP, Gajewski TF. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol. 2008;38:2438–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  282. Cham CM, Gajewski TF. Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells. J Immunol. 2005;174:4670–7.

    Article  CAS  PubMed  Google Scholar 

  283. Oestreich KJ, et al. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat Immunol. 2014;15:957–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  284. Ahlfors H, et al. IL-22 fate reporter reveals origin and control of IL-22 production in homeostasis and infection. J Immunol. 2014;193:4602–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  285. Wilhelm C, et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol. 2011;12:1071–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  286. Hirota K, et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol. 2011;12:255–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  287. Zhou X, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009;10:1000–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  288. Gerlach C, et al. One naive T cell, multiple fates in CD8+ T cell differentiation. J Exp Med. 2010;207:1235–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  289. Stemberger C, et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity. 2007;27:985–97.

    Article  CAS  PubMed  Google Scholar 

  290. Plumlee CR, Sheridan BS, Cicek BB, Lefrancois L. Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity. 2013;39:347–56.

    Article  CAS  PubMed  Google Scholar 

  291. Tubo NJ, et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell. 2013;153:785–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  292. Gerlach C, et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science. 2013;340:635–9.

    Article  CAS  PubMed  Google Scholar 

  293. Buchholz VR, et al. Disparate individual fates compose robust CD8+ T cell immunity. Science. 2013;340:630–5.

    Article  CAS  PubMed  Google Scholar 

  294. Becattini S, et al. T cell immunity. Functional heterogeneity of human memory CD4(+) T cell clones primed by pathogens or vaccines. Science. 2015;347:400–6.

    Article  CAS  PubMed  Google Scholar 

  295. Han A, Glanville J, Hansmann L, Davis MM. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol. 2014;32:684–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  296. Malmhall C, et al. Immunophenotyping of circulating T helper cells argues for multiple functions and plasticity of T cells in vivo in humans–possible role in asthma. PLoS One. 2012;7:e40012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  297. Dominguez-Villar M, Baecher-Allan CM, Hafler DA. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med. 2011;17:673–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  298. Wang YH, et al. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med. 2010;207:2479–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  299. O’Shea JJ, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  300. Panzer M, et al. Rapid in vivo conversion of effector T cells into Th2 cells during helminth infection. J Immunol. 2012;188:615–23.

    Article  CAS  PubMed  Google Scholar 

  301. Perez VL, Lederer JA, Lichtman AH, Abbas AK. Stability of Th1 and Th2 populations. Int Immunol. 1995;7:869–75.

    Article  CAS  PubMed  Google Scholar 

  302. Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol. 2010;11:674–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  303. Hegazy AN, et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. Immunity. 2010;32:116–28.

    Article  CAS  PubMed  Google Scholar 

  304. Dardalhon V, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9, 1347-1355 (2008).

    Google Scholar 

  305. Bending D, et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest. 2009;119:565–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  306. Lee YK, et al. Late developmental plasticity in the T helper 17 lineage. Immunity. 2009;30:92–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  307. Lu KT, et al. Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity. 2011;35:622–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  308. Knosp CA, Johnston JA. Regulation of CD4+ T-cell polarization by suppressor of cytokine signalling proteins. Immunology. 2012;135:101–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  309. Zhou L, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453:236–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  310. Gagliani N, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 2015;523:221–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  311. Bettelli E, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  CAS  PubMed  Google Scholar 

  312. Ohkura N, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. 2012;37:785–99.

    Article  CAS  PubMed  Google Scholar 

  313. Samstein RM, et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell. 2012;151:153–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  314. Goswami R, et al. STAT6-dependent regulation of Th9 development. J Immunol. 2012;188:968–75.

    Article  CAS  PubMed  Google Scholar 

  315. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  316. Park BV, Pan F. The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases. Cell Mol Immunol. 2015;12:533–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  317. Brown CC, et al. Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program. Immunity. 2015;42:499–511.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  318. Wang Y, et al. The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-gamma-producing T helper 17 cells. Immunity. 2014;40:355–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  319. Roychoudhuri R, et al. BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature. 2013;498:506–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  320. Liu Y, et al. Two histone/protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ T-regulatory cell development and function. Mol Cell Biol. 2014;34:3993–4007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  321. Williams CL, et al. STAT4 and T-bet are required for the plasticity of IFN-gamma expression across Th2 ontogeny and influence changes in Ifng promoter DNA methylation. J Immunol. 2013;191:678–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  322. van den Ham HJ, de Boer RJ. Cell division curtails helper phenotype plasticity and expedites helper T-cell differentiation. Immunol Cell Biol. 2012;90:860–8.

    Article  CAS  PubMed  Google Scholar 

  323. Onodera A, Nakayama T. Epigenetics of T cells regulated by Polycomb/Trithorax molecules. Trends Mol Med. 2015;21:330–40.

    Article  CAS  PubMed  Google Scholar 

  324. Busslinger M, Tarakhovsky A. Epigenetic control of immunity. Cold Spring Harb Perspect Biol. 2014;6:a019307.

    Google Scholar 

  325. Badeaux AI, Shi Y. Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol. 2013;14:211–24.

    Article  CAS  PubMed Central  Google Scholar 

  326. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  327. Patterson SJ, et al. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J Immunol. 2011;186:5533–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  328. Crellin NK, Garcia RV, Levings MK. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood. 2007;109:2014–22.

    Article  CAS  PubMed  Google Scholar 

  329. Walsh PT, et al. PTEN inhibits IL-2 receptor-mediated expansion of CD4+ CD25+ Tregs. J Clin Invest. 2006;116:2521–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  330. Shrestha S, et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  331. Huynh A, et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol. 2015;16:188–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  332. Yurchenko E, et al. Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo. PLoS One. 2012;7:e35572.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  333. Sauer S, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A. 2008;105:7797–802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  334. Park Y, et al. TSC1 regulates the balance between effector and regulatory T cells. J Clin Invest. 2013;123:5165–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  335. Klysz D, et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8:ra97.

    Google Scholar 

  336. Lee JH, Elly C, Park Y, Liu YC. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1alpha to maintain regulatory T cell stability and suppressive capacity. Immunity. 2015;42:1062–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  337. Nakamura H, et al. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J Immunol. 2005;174:7592–9.

    Article  CAS  PubMed  Google Scholar 

  338. Shu U, et al. Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol. 1995;25:1125–8.

    Article  CAS  PubMed  Google Scholar 

  339. Kennedy MK, et al. CD40/CD40 ligand interactions are required for T cell-dependent production of interleukin-12 by mouse macrophages. Eur J Immunol. 1996;26:370–8.

    Article  CAS  PubMed  Google Scholar 

  340. Ferrari S, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98:12614–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  341. Subauste CS, Wessendarp M, Sorensen RU, Leiva LE. CD40-CD40 ligand interaction is central to cell-mediated immunity against toxoplasma gondii: patients with hyper IgM syndrome have a defective type 1 immune response that can be restored by soluble CD40 ligand trimer. J Immunol. 1999;162:6690–700.

    CAS  PubMed  Google Scholar 

  342. Filipe-Santos O, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203:1745–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  343. Minegishi Y, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.

    Article  CAS  PubMed  Google Scholar 

  344. Puel A, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332:65–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  345. Liu L, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208:1635–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  346. Fahy JV. Type 2 inflammation in asthma–present in most, absent in many. Nat Rev Immunol. 2015;15:57–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  347. Risma KA, et al. V75R576 IL-4 receptor alpha is associated with allergic asthma and enhanced IL-4 receptor function. J Immunol. 2002;169:1604–10.

    Article  CAS  PubMed  Google Scholar 

  348. Wildin RS, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27:18–20.

    Article  CAS  PubMed  Google Scholar 

  349. Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.

    Article  CAS  PubMed  Google Scholar 

  350. de Saint Basile G, Menasche G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol. 2010;10:568–79.

    Article  CAS  PubMed  Google Scholar 

  351. Suga N, et al. Perforin defects of primary haemophagocytic lymphohistiocytosis in Japan. Br J Haematol. 2002;116:346–9.

    Article  CAS  PubMed  Google Scholar 

  352. Sepulveda FE, et al. LYST controls the biogenesis of the endosomal compartment required for secretory lysosome function. Traffic. 2015;16:191–203.

    Article  CAS  PubMed  Google Scholar 

  353. Lee SJ, et al. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development. PLoS Pathog. 2012;8:e1002499.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  354. Karwacz K, et al. Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation. Nat Immunol. 2017;18:412–21.

    Article  CAS  PubMed  Google Scholar 

  355. Yosef N, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496:461–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  356. Gaublomme JT, et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell. 2015;163:1400–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  357. Xiao S, et al. Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity. 2014;40:477–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Fondation de France (L.A. and T.R.V.), the Fondation ARC pour la recherche sur le cancer (L.A.), the Ligue Régionale contre le cancer comité grand est. (L.A.), the Institut Mérieux (L.A.), the Conseil Régional de Bourgogne and FEDER (L.A.), the Agence Nationale de la Recherche [ANR-13-JSV3-0001] (L.A.) and [ANR-11-LABX-0021]. L.A. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement N°677251).

Conflict of Interest

Lionel Apetoh is a consultant for Roche and Merck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Apetoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vargas, T.R., Apetoh, L. (2018). The Secrets of T Cell Polarization. In: Zitvogel, L., Kroemer, G. (eds) Oncoimmunology. Springer, Cham. https://doi.org/10.1007/978-3-319-62431-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62431-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62430-3

  • Online ISBN: 978-3-319-62431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics