Skip to main content

Predictors of Response to Immune Checkpoint Blockade

  • Chapter
  • First Online:
  • 2970 Accesses

Abstract

Cancer therapy has been revolutionized over the past several years through the use of immunotherapy—with demonstrable success in the treatment of multiple cancer types using immune checkpoint blockade and other therapeutic strategies. However, responses are still quite variable, and predictive biomarkers of response and toxicity are currently underdeveloped. A deep understanding of responses to immune checkpoint blockade pivots on a fundamental knowledge of antitumor immune responses, which are influenced by numerous factors in the tumor itself, in the tumor microenvironment, in host immunity, and in the local and extended environment. Together, a more holistic approach incorporating assessment of each of these factors will help facilitate a more customized and tailored approach in this age of precision medicine.

This is a preview of subscription content, log in via an institution.

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013. PubMed PMID: 21376230.

    Article  CAS  PubMed  Google Scholar 

  2. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44. doi:10.1016/j.cell.2016.02.065. PubMed PMID: 26997480; PubMed Central PMCID: PMCPMC4808437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, Saco J, Homet Moreno B, Mezzadra R, Chmielowski B, Ruchalski K, Shintaku IP, Sanchez PJ, Puig-Saus C, Cherry G, Seja E, Kong X, Pang J, Berent-Maoz B, Comin-Anduix B, Graeber TG, Tumeh PC, Schumacher TN, Lo RS, Ribas A. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29. doi:10.1056/NEJMoa1604958. PubMed PMID: 27433843; PubMed Central PMCID: PMCPMC5007206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, JA MK, Zhang C, Liang X, Williams LJ, Deng W, Chen G, Mbofung R, Lazar AJ, Torres-Cabala CA, Cooper ZA, Chen PL, Tieu TN, Spranger S, Yu X, Bernatchez C, Forget MA, Haymaker C, Amaria R, JL MQ, Glitza IC, Cascone T, Li HS, Kwong LN, Heffernan TP, Hu J, Bassett RL Jr, Bosenberg MW, Woodman SE, Overwijk WW, Lizee G, Roszik J, Gajewski TF, Wargo JA, Gershenwald JE, Radvanyi L, Davies MA, Hwu P. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6(2):202–16. doi:10.1158/2159-8290.CD-15-0283. PubMed PMID: 26645196; PubMed Central PMCID: PMCPMC4744499.

    Article  CAS  PubMed  Google Scholar 

  5. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5. doi:10.1038/nature14404. PubMed PMID: 25970248.

    Article  CAS  PubMed  Google Scholar 

  6. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23. doi:10.1016/j.cell.2017.01.017. PubMed PMID: 28187290.

    Article  CAS  PubMed  Google Scholar 

  7. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50. doi:10.1038/nature13385. PubMed PMID: 25079552; PubMed Central PMCID: PMCPMC4231481.

    Article  Google Scholar 

  8. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. doi:10.1016/j.cell.2015.05.044. PubMed PMID: 26091043; PubMed Central PMCID: PMCPMC4580370.

    Article  Google Scholar 

  9. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi:10.1038/nature11252. PubMed PMID: 22810696; PubMed Central PMCID: PMCPMC3401966.

    Article  Google Scholar 

  10. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jager N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdes-Mas R, van Buuren MM, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome I, Consortium IBC, Consortium IM-S, PedBrain I, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. doi:10.1038/nature12477. PubMed PMID: 23945592; PubMed Central PMCID: PMCPMC3776390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99. doi:10.1056/NEJMoa1406498. PubMed PMID: 25409260; PubMed Central PMCID: PMCPMC4315319.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9. doi:10.1126/science.aaf1490. PubMed PMID: 26940869; PubMed Central PMCID: PMCPMC4984254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karasaki T, Nagayama K, Kuwano H, Nitadori JI, Sato M, Anraku M, Hosoi A, Matsushita H, Takazawa M, Ohara O, Nakajima J, Kakimi K. Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing. Cancer Sci. 2017;108(2):170–7. doi:10.1111/cas.13131. PubMed PMID: 27960040.

  14. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, De Macedo MP, Austin-Breneman JL, Jiang H, Chang Q, Reddy SM, Chen WS, Tetzlaff MT, Broaddus RJ, Davies MA, Gershenwald JE, Haydu L, Lazar AJ, Patel SP, Hwu P, Hwu WJ, Diab A, Glitza IC, Woodman SE, Vence LM, Wistuba ARN II, Kwong LN, Prieto V, Davis RE, Ma W, Overwijk WW, Sharpe AH, Hu J, Futreal PA, Blando J, Sharma P, Allison JP, Chin L, Wargo JA. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6(8):827–37. doi:10.1158/2159-8290.CD-15-1545. PubMed PMID: 27301722; PubMed Central PMCID: PMCPMC5082984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D'Urso CM, Wang ZG, Cao Y, Tatake R, Zeff RA, Ferrone S. Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. J Clin Invest. 1991;87(1):284–92. doi:10.1172/JCI114984. PubMed PMID: 1898655; PubMed Central PMCID: PMCPMC295046.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM, Ferrone CR, Flaherty KT, Lawrence DP, Fisher DE, Tsao H, Wargo JA. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010;70(13):5213–9. doi:10.1158/0008-5472.CAN-10-0118. PubMed PMID: 20551059.

    Article  CAS  PubMed  Google Scholar 

  17. Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, Mitra D, Boni A, Newton LP, Liu C, Peng W, Sullivan RJ, Lawrence DP, Hodi FS, Overwijk WW, Lizee G, Murphy GF, Hwu P, Flaherty KT, Fisher DE, Wargo JA. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19(5):1225–31. doi:10.1158/1078-0432.CCR-12-1630. PubMed PMID: 23307859; PubMed Central PMCID: PMCPMC3752683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sigalotti L, Fratta E, Coral S, Tanzarella S, Danielli R, Colizzi F, Fonsatti E, Traversari C, Altomonte M, Maio M. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res. 2004;64(24):9167–71. doi:10.1158/0008-5472.CAN-04-1442. PubMed PMID: 15604288.

    Article  CAS  PubMed  Google Scholar 

  19. Wargo JA, Robbins PF, Li Y, Zhao Y, El-Gamil M, Caragacianu D, Zheng Z, Hong JA, Downey S, Schrump DS, Rosenberg SA, Morgan RA. Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression. Cancer Immunol Immunother. 2009;58(3):383–94. doi:10.1007/s00262-008-0562-x. PubMed PMID: 18677478; PubMed Central PMCID: PMCPMC2684457.

    Article  CAS  PubMed  Google Scholar 

  20. Lastwika KJ, Wilson W 3rd, Li QK, Norris J, Xu H, Ghazarian SR, Kitagawa H, Kawabata S, Taube JM, Yao S, Liu LN, Gills JJ, Dennis PA. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 2016;76(2):227–38. doi:10.1158/0008-5472.CAN-14-3362. PubMed PMID: 26637667.

    Article  CAS  PubMed  Google Scholar 

  21. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, Wilkerson MD, Fecci PE, Butaney M, Reibel JB, Soucheray M, Cohoon TJ, Janne PA, Meyerson M, Hayes DN, Shapiro GI, Shimamura T, Sholl LM, Rodig SJ, Freeman GJ, Hammerman PS, Dranoff G, Wong KK. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3(12):1355–63. doi:10.1158/2159-8290.CD-13-0310. PubMed PMID: 24078774; PubMed Central PMCID: PMCPMC3864135.

    Article  CAS  PubMed  Google Scholar 

  22. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, Chen PL, Hwu P, Allison JP, Futreal A, Wargo JA, Sharma P. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167(2):397–404 e9. doi:10.1016/j.cell.2016.08.069. PubMed PMID: 27667683; PubMed Central PMCID: PMCPMC5088716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. doi:10.1126/science.1203486. PubMed PMID: 21436444.

    Article  CAS  PubMed  Google Scholar 

  24. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi:10.1016/j.immuni.2013.07.012. PubMed PMID: 23890059.

    Article  PubMed  Google Scholar 

  25. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30. doi:10.1038/nature21349. PubMed PMID: 28102259.

    Article  CAS  PubMed  Google Scholar 

  26. Blank CU, Haanen JB, Ribas A, Schumacher TN. Cancer immunology. The “cancer immunogram”. Science. 2016;352(6286):658–60. doi:10.1126/science.aaf2834. PubMed PMID: 27151852.

    Article  CAS  PubMed  Google Scholar 

  27. Cogdill AP, Andrews MC, Wargo JA. Hallmarks of response to immune checkpoint blockade. Br J Cancer. 2017:27;117(1):1–7. doi:10.1038/bjc.2017.136. Epub 2017 May 18.

  28. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4. doi:10.1126/science.1129139. PubMed PMID: 17008531.

    Article  CAS  PubMed  Google Scholar 

  29. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71. doi:10.1038/nature13954. PubMed PMID: 25428505; PubMed Central PMCID: PMCPMC4246418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116. doi:10.1126/scitranslmed.3006504. PubMed PMID: 23986400; PubMed Central PMCID: PMCPMC4136707.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA, Chen JQ, Li HS, Watowich SS, Yang Y, Tompers Frederick D, Cooper ZA, Mbofung RM, Whittington M, Flaherty KT, Woodman SE, Davies MA, Radvanyi LG, Overwijk WW, Lizee G, Hwu P. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res. 2013;19(2):393–403. doi:10.1158/1078-0432.CCR-12-1626. PubMed PMID: 23204132; PubMed Central PMCID: PMCPMC4120472.

    Article  CAS  PubMed  Google Scholar 

  32. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203(7):1651–6. doi:10.1084/jem.20051848. PubMed PMID: 16801397; PubMed Central PMCID: PMCPMC2118331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. doi:10.1038/nri2506. PubMed PMID: 19197294; PubMed Central PMCID: PMCPMC2828349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother. 2008;57(8):1115–24. doi:10.1007/s00262-007-0441-x. PubMed PMID: 18193223; PubMed Central PMCID: PMCPMC4110970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu X, Giobbie-Hurder A, Liao X, Lawrence D, McDermott D, Zhou J, Rodig S, Hodi FS. VEGF neutralization plus CTLA-4 blockade alters soluble and cellular factors associated with enhancing lymphocyte infiltration and humoral recognition in melanoma. Cancer Immunol Res. 2016;4(10):858–68. doi:10.1158/2326-6066.CIR-16-0084. PubMed PMID: 27549123; PubMed Central PMCID: PMCPMC5050160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70(15):6171–80. doi:10.1158/0008-5472.CAN-10-0153. PubMed PMID: 20631075; PubMed Central PMCID: PMCPMC2912959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khalili JS, Liu S, Rodriguez-Cruz TG, Whittington M, Wardell S, Liu C, Zhang M, Cooper ZA, Frederick DT, Li Y, Zhang M, Joseph RW, Bernatchez C, Ekmekcioglu S, Grimm E, Radvanyi LG, Davis RE, Davies MA, Wargo JA, Hwu P, Lizee G. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res. 2012;18(19):5329–40. doi:10.1158/1078-0432.CCR-12-1632. PubMed PMID: 22850568; PubMed Central PMCID: PMCPMC3463754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71. doi:10.1038/nrc3611. PubMed PMID: 24154716.

    Article  CAS  PubMed  Google Scholar 

  39. Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, Blay JY. Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood. 1998;92(12):4778–91. PubMed PMID: 9845545.

    CAS  PubMed  Google Scholar 

  40. Wang E, Selleri S, Sabatino M, Monaco A, Pos Z, Worschech A, Stroncek DF, Marincola FM. Spontaneous and treatment-induced cancer rejection in humans. Expert Opin Biol Ther. 2008;8(3):337–49. doi:10.1517/14712598.8.3.337. PubMed PMID: 18294104.

    Article  CAS  PubMed  Google Scholar 

  41. Starnes CO. Coley’s toxins in perspective. Nature. 1992;357(6373):11–2. doi:10.1038/357011a0. PubMed PMID: 1574121.

    Article  CAS  PubMed  Google Scholar 

  42. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Am J Med Sci. 1893;105(5):487–511.

    Article  Google Scholar 

  43. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, Gherardini PF, Prestwood TR, Chabon J, Bendall SC, Fong L, Nolan GP, Engleman EG. Systemic immunity is required for effective cancer immunotherapy. Cell. 2017;168(3):487–502 e15. doi:10.1016/j.cell.2016.12.022. PubMed PMID: 28111070.

  44. Ye Q, Song DG, Poussin M, Yamamoto T, Best A, Li C, Coukos G, Powell DJ Jr. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin Cancer Res. 2014;20(1):44–55. doi:10.1158/1078-0432.CCR-13-0945. PubMed PMID: 24045181; PubMed Central PMCID: PMCPMC3947326.

    Article  CAS  PubMed  Google Scholar 

  45. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, Trebska-McGowan K, Wunderlich JR, Yang JC, Rosenberg SA. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22(4):433–8. doi:10.1038/nm.4051. PubMed PMID: 26901407.

    Article  CAS  PubMed  Google Scholar 

  46. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87. doi:10.1038/nrc.2016.36. PubMed PMID: 27079802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kokolus KM, Capitano ML, Lee CT, Eng JW, Waight JD, Hylander BL, Sexton S, Hong CC, Gordon CJ, Abrams SI, Repasky EA. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc Natl Acad Sci U S A. 2013;110(50):20176–81. doi:10.1073/pnas.1304291110. PubMed PMID: 24248371; PubMed Central PMCID: PMCPMC3864348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9. doi:10.1126/science.aac4255. PubMed PMID: 26541606; PubMed Central PMCID: PMCPMC4873287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. doi:10.1126/science.aad1329. PubMed PMID: 26541610; PubMed Central PMCID: PMCPMC4721659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, GA MA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi:10.1056/NEJMoa1504030. PubMed PMID: 26027431.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Joseph RW, Elassaiss-Schaap J, Wolchok JD, Joshua AM, Ribas A, Hodi FS, Hamid O, Robert C, Daud A, Hwu W-J, Kefford R, Hersey P, Weber JS, Patnaik A, De Alwis DP, Perrone AM, Kang SP, Ebbinghaus S, Anderson KM, Gangadhar TC. Baseline tumor size as an independent prognostic factor for overall survival in patients with metastatic melanoma treated with the anti-PD-1 monoclonal antibody MK-3475. ASCO Annual Meeting 2014. Chicago: Journal of Clinical Oncology 32, no. 15_suppl (May 2014) 3015–3015. DOI:10.1200/jco.2014.32.15_suppl.3015

  52. Nishino M, Giobbie-Hurder A, Ramaiya NH, Hodi FS. Response assessment in metastatic melanoma treated with ipilimumab and bevacizumab: CT tumor size and density as markers for response and outcome. J Immunother Cancer. 2014;2(1):40. doi:10.1186/s40425-014-0040-2. PubMed PMID: 25411640; PubMed Central PMCID: PMCPMC4236430.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud A, Hamid O, Patnaik A, Ribas A, Robert C, Gangadhar TC, Joshua AM, Hersey P, Dronca R, Joseph R, Hille D, Xue D, Li XN, Kang SP, Ebbinghaus S, Perrone A, Wolchok JD. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol. 2016;34(13):1510–7. doi:10.1200/JCO.2015.64.0391. PubMed PMID: 26951310; PubMed Central PMCID: PMCPMC5070547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shreders A, Joseph R, Peng C, Ye F, Zhao S, Puzanov I, Sosman JA, Johnson DB. Prolonged benefit from ipilimumab correlates with improved outcomes from subsequent pembrolizumab. Cancer Immunol Res. 2016;4(7):569–73. doi:10.1158/2326-6066.CIR-15-0281. PubMed PMID: 27197063; PubMed Central PMCID: PMCPMC4940026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, Zhao X, Martinez AJ, Wang W, Gibney G, Kroeger J, Eysmans C, Sarnaik AA, Chen YA. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31(34):4311–8. doi:10.1200/JCO.2013.51.4802. PubMed PMID: 24145345; PubMed Central PMCID: PMCPMC3837092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bowyer S, Prithviraj P, Lorigan P, Larkin J, McArthur G, Atkinson V, Millward M, Khou M, Diem S, Ramanujam S, Kong B, Liniker E, Guminski A, Parente P, Andrews MC, Parakh S, Cebon J, Long GV, Carlino MS, Klein O. Efficacy and toxicity of treatment with the anti-CTLA-4 antibody ipilimumab in patients with metastatic melanoma after prior anti-PD-1 therapy. Br J Cancer. 2016;114(10):1084–9. doi:10.1038/bjc.2016.107. PubMed PMID: 27124339; PubMed Central PMCID: PMCPMC4865968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, DF MD, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. doi:10.1056/NEJMoa1200690. PubMed PMID: 22658127; PubMed Central PMCID: PMCPMC3544539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbe C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. doi:10.1056/NEJMoa1412082. PubMed PMID: 25399552.

    Article  CAS  PubMed  Google Scholar 

  59. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39. doi:10.1056/NEJMoa1507643. PubMed PMID: 26412456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35. doi:10.1056/NEJMoa1504627. PubMed PMID: 26028407; PubMed Central PMCID: PMCPMC4681400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, Hansson J, Guida M, Hyams DM, Gomez H, Bastholt L, Chasalow SD, Berman D. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med. 2011;9:204. doi:10.1186/1479-5876-9-204. PubMed PMID: 22123319; PubMed Central PMCID: PMCPMC3239318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Daud AI, Loo K, Pauli ML, Sanchez-Rodriguez R, Sandoval PM, Taravati K, Tsai K, Nosrati A, Nardo L, Alvarado MD, Algazi AP, Pampaloni MH, Lobach IV, Hwang J, Pierce RH, Gratz IK, Krummel MF, Rosenblum MD. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016;126(9):3447–52. doi:10.1172/JCI87324. PubMed PMID: 27525433; PubMed Central PMCID: PMCPMC5004965.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, Palaskas N, Rodriguez GA, Parisi G, Azhdam A, Chmielowski B, Cherry G, Seja E, Berent-Maoz B, Shintaku IP, Le DT PDM, Diaz LA Jr, Tumeh PC, Graeber TG, Lo RS, Comin-Anduix B, Ribas A. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7(2):188–201. doi:10.1158/2159-8290.CD-16-1223. PubMed PMID: 27903500; PubMed Central PMCID: PMCPMC5296316.

    Article  CAS  PubMed  Google Scholar 

  64. Lipson EJ, Velculescu VE, Pritchard TS, Sausen M, Pardoll DM, Topalian SL, Diaz LA Jr. Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J Immunother Cancer. 2014;2(1):42. doi:10.1186/s40425-014-0042-0. PubMed PMID: 25516806; PubMed Central PMCID: PMCPMC4267741.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Santiago-Walker A, Gagnon R, Mazumdar J, Casey M, Long GV, Schadendorf D, Flaherty K, Kefford R, Hauschild A, Hwu P, Haney P, O'Hagan A, Carver J, Goodman V, Legos J, Martin AM. Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials. Clin Cancer Res. 2016;22(3):567–74. doi:10.1158/1078-0432.CCR-15-0321. PubMed PMID: 26446943.

    Article  CAS  PubMed  Google Scholar 

  66. Tie J, Kinde I, Wang Y, Wong HL, Roebert J, Christie M, Tacey M, Wong R, Singh M, Karapetis CS, Desai J, Tran B, Strausberg RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26(8):1715–22. doi:10.1093/annonc/mdv177. PubMed PMID: 25851626; PubMed Central PMCID: PMCPMC4511218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsao SC, Weiss J, Hudson C, Christophi C, Cebon J, Behren A, Dobrovic A. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 2015;5:11198. doi:10.1038/srep11198. PubMed PMID: 26095797; PubMed Central PMCID: PMCPMC4476039.

    Article  PubMed  Google Scholar 

  68. Felix J, Cassinat B, Porcher R, Schlageter MH, Maubec E, Pages C, Baroudjian B, Homyrda L, Boukouaci W, Tamouza R, Bagot M, Caignard A, Toubert A, Lebbe C, Moins-Teisserenc H. Relevance of serum biomarkers associated with melanoma during follow-up of anti-CTLA-4 immunotherapy. Int Immunopharmacol. 2016;40:466–73. doi:10.1016/j.intimp.2016.09.030. PubMed PMID: 27728898.

    Article  CAS  PubMed  Google Scholar 

  69. Ferrucci PF, Gandini S, Battaglia A, Alfieri S, Di Giacomo AM, Giannarelli D, Cappellini GC, De Galitiis F, Marchetti P, Amato G, Lazzeri A, Pala L, Cocorocchio E, Martinoli C. Baseline neutrophil-to-lymphocyte ratio is associated with outcome of ipilimumab-treated metastatic melanoma patients. Br J Cancer. 2015;112(12):1904–10. doi:10.1038/bjc.2015.180. PubMed PMID: 26010413; PubMed Central PMCID: PMCPMC4580390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zaragoza J, Caille A, Beneton N, Bens G, Christiann F, Maillard H, Machet L. High neutrophil to lymphocyte ratio measured before starting ipilimumab treatment is associated with reduced overall survival in patients with melanoma. Br J Dermatol. 2016;174(1):146–51. doi:10.1111/bjd.14155. PubMed PMID: 26343230.

    Article  CAS  PubMed  Google Scholar 

  71. Ferrucci PF, Ascierto PA, Pigozzo J, Del Vecchio M, Maio M, Antonini Cappellini GC, Guidoboni M, Queirolo P, Savoia P, Mandala M, Simeone E, Valpione S, Altomonte M, Spagnolo F, Cocorocchio E, Gandini S, Giannarelli D, Martinoli C. Baseline neutrophils and derived neutrophil-to-lymphocyte ratio: prognostic relevance in metastatic melanoma patients receiving ipilimumab. Ann Oncol. 2016;27(4):732–8. doi:10.1093/annonc/mdw016. PubMed PMID: 26802161.

    Article  CAS  PubMed  Google Scholar 

  72. Zheng H, Liu X, Zhang J, Rice SJ, Wagman M, Kong Y, Zhu L, Zhu J, Joshi M, Belani CP. Expression of PD-1 on CD4+ T cells in peripheral blood associates with poor clinical outcome in non-small cell lung cancer. Oncotarget. 2016;7(35):56233–40. doi:10.18632/oncotarget.9316. PubMed PMID: 27191652.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Koguchi Y, Hoen HM, Bambina SA, Rynning MD, Fuerstenberg RK, Curti BD, Urba WJ, Milburn C, Bahjat FR, Korman AJ, Bahjat KS. Serum immunoregulatory proteins as predictors of overall survival of metastatic melanoma patients treated with ipilimumab. Cancer Res. 2015;75(23):5084–92. doi:10.1158/0008-5472.CAN-15-2303. PubMed PMID: 26627641.

    Article  CAS  PubMed  Google Scholar 

  74. Ng Tang D, Shen Y, Sun J, Wen S, Wolchok JD, Yuan J, Allison JP, Sharma P. Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol Res. 2013;1(4):229–34. doi:10.1158/2326-6066.CIR-13-0020. PubMed PMID: 24777852; PubMed Central PMCID: PMCPMC4636341.

    Article  PubMed  Google Scholar 

  75. Delyon J, Mateus C, Lefeuvre D, Lanoy E, Zitvogel L, Chaput N, Roy S, Eggermont AM, Routier E, Robert C. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: an early increase in lymphocyte and eosinophil counts is associated with improved survival. Ann Oncol. 2013;24(6):1697–703. doi:10.1093/annonc/mdt027. PubMed PMID: 23439861.

    Article  CAS  PubMed  Google Scholar 

  76. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, Maio M, Binder M, Bohnsack O, Nichol G, Humphrey R, Hodi FS. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20. doi:10.1158/1078-0432.CCR-09-1624. PubMed PMID: 19934295.

    Article  CAS  PubMed  Google Scholar 

  77. Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665. doi:10.1259/bjr.20160665. PubMed PMID: 27936886.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Khoja L, Kibiro M, Metser U, Gedye C, Hogg D, Butler MO, Atenafu EG, Joshua AM. Patterns of response to anti-PD-1 treatment: an exploratory comparison of four radiological response criteria and associations with overall survival in metastatic melanoma patients. Br J Cancer. 2016;115(10):1186–92. doi:10.1038/bjc.2016.308. PubMed PMID: 27701388; PubMed Central PMCID: PMCPMC5104887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gopalakrishnan V, Spencer C, Reuben A, Karpinets TV, Hutchinson D, Hoffman K, Prieto P, Tetzlaff M, Lazar A, Davies MA, Gershenwald J, Jenq R, Hwu W-J, Sharma P, Allison JP, Futreal A, Ajami N, Petrosino J, Daniel-MacDougall C, Wargo JA. Diversity and composition of the gut microbiome are associated with differential responses to PD-1 based therapy in patients with metastatic melanoma. 2017 ASCO-SITC Clinical Immuno-Oncology Symposium, 2017, Orlando, FL.

    Google Scholar 

  80. Bertrand A, Kostine M, Barnetche T, Truchetet ME, Schaeverbeke T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 2015;13:211. doi:10.1186/s12916-015-0455-8. PubMed PMID: 26337719; PubMed Central PMCID: PMCPMC4559965.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ascierto PA, Simeone E, Sileni VC, Pigozzo J, Maio M, Altomonte M, Del Vecchio M, Di Guardo L, Marchetti P, Ridolfi R, Cognetti F, Testori A, Bernengo MG, Guida M, Marconcini R, Mandala M, Cimminiello C, Rinaldi G, Aglietta M, Queirolo P. Clinical experience with ipilimumab 3 mg/kg: real-world efficacy and safety data from an expanded access programme cohort. J Transl Med. 2014;12:116. doi:10.1186/1479-5876-12-116. PubMed PMID: 24885479; PubMed Central PMCID: PMCPMC4030525.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Horvat TZ, Adel NG, Dang TO, Momtaz P, Postow MA, Callahan MK, Carvajal RD, Dickson MA, D'Angelo SP, Woo KM, Panageas KS, Wolchok JD, Chapman PB. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at memorial Sloan Kettering cancer center. J Clin Oncol. 2015;33(28):3193–8. doi:10.1200/JCO.2015.60.8448. PubMed PMID: 26282644; PubMed Central PMCID: PMCPMC5087335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Judd J, Zibelman M, Handorf E, O’Neill J, Ramamurthy C, Bentota S, Doyle J, Uzzo RG, Bauman J, Borghaei H, Plimack ER, Mehra R, Geynisman DM. Immune-related adverse events as a biomarker in non-melanoma patients treated with programmed cell death 1 inhibitors. Oncologist. 2017 Jun 26. pii: theoncologist. 2017–0133. doi:10.1634/theoncologist. 2017-0133. [Epub ahead of print].

  84. Shahabi V, Berman D, Chasalow SD, Wang L, Tsuchihashi Z, Hu B, Panting L, Jure-Kunkel M, Ji RR. Gene expression profiling of whole blood in ipilimumab-treated patients for identification of potential biomarkers of immune-related gastrointestinal adverse events. J Transl Med. 2013;11:75. doi:10.1186/1479-5876-11-75. PubMed PMID: 23521917; PubMed Central PMCID: PMCPMC3637501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roh W, Chen P-L, Reuben A, Spencer CN, Prieto PA, Miller JP, Gopalakrishnan V, Wang F, Cooper ZA, Reddy SM, Gumbs C, Little L, Chang Q, Chen W-S, Wani K, De Macedo MP, Chen E, Austin-Breneman JL, Jiang H, Roszik J, Tetzlaff MT, Davies MA, Gershenwald JE, Tawbi H, Lazar AJ, Hwu P, Hwu W-J, Diab A, Glitza IC, Patel SP, Woodman SE, Amaria RN, Prieto VG, Hu J, Sharma P, Allison JP, Chin L, Zhang J, Wargo JA, Futreal PA. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9(379). pii: eaah3560. doi:10.1126/scitranslmed.aah3560. Erratum in: Sci Transl Med. 2017 Apr 12;9(385). PMID: 28251903.

  86. Fracasso PM, Freeman DJ, Simonsen K, Shen Y, Gupta M, Comprelli A, Gainor JF, Hellmann M, Chow LQ, Forde PM, Govindan R, Reilly TP, Cassidy J. A phase 2, fast real-time assessment of combination therapies in immuno-oncology trial in patients with advanced non-small cell lung cancer (FRACTION-lung). 41st ESMO Congress. Copenhagen, Denmark: Ann Oncol (2016) 27 (suppl_6): 1295TiP. doi:10.1093/annonc/mdw383.95.

Download references

Disclosures

JAW has honoraria from speakers’ bureau of Dava Oncology, Bristol-Myers Squibb, and Illumina and is an advisory board member for GlaxoSmithKline, Novartis, and Roche/Genentech. MCA reports no relevant conflicts of interest or financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Wargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrews, M.C., Wargo, J.A. (2018). Predictors of Response to Immune Checkpoint Blockade. In: Zitvogel, L., Kroemer, G. (eds) Oncoimmunology. Springer, Cham. https://doi.org/10.1007/978-3-319-62431-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62431-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62430-3

  • Online ISBN: 978-3-319-62431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics