Skip to main content

Effect of Pharmaceutical Compounds on Myeloid-Derived Suppressor Cells

  • Chapter
  • First Online:
  • 2963 Accesses

Abstract

Myeloid-derived suppressor cells (MDSCs) are a major immunosuppressive population in the tumor microenvironment. After being generated in the bone marrow, in tumor-bearing hosts, MDSCs migrate toward secondary lymphoid organs and the tumor where they contribute to the establishment of an immunosuppressive state. MDSCs directly support tumor growth and metastasis. The elimination of this cell population has been the focus for several years. We here review the recent findings exploring how various pharmaceutical compounds can target MDSCs and reduce their resultant immunosuppression.

This is a preview of subscription content, log in via an institution.

References

  1. Condamine T, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 2016;1(2):aaf8943.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125(9):3356–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Porembka MR, et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother. 2012;61(9):1373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Capietto AH, et al. Down-regulation of PLCgamma2-beta-catenin pathway promotes activation and expansion of myeloid-derived suppressor cells in cancer. J Exp Med. 2013;210(11):2257–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan HH, et al. Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res. 2010;70(15):6139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ichikawa M, et al. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9(2):133–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hiratsuka S, et al. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol. 2006;8(12):1369–75.

    Article  CAS  PubMed  Google Scholar 

  8. Panni RZ, et al. Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother. 2014;63(5):513–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182(8):4499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pan PY, et al. Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010;70(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  11. Corzo CA, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009;182(9):5693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gehad AE, et al. Nitric oxide-producing myeloid-derived suppressor cells inhibit vascular E-selectin expression in human squamous cell carcinomas. J Invest Dermatol. 2012;132(11):2642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raber P, Ochoa AC, Rodriguez PC. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Investig. 2012;41(6–7):614–34.

    Article  CAS  Google Scholar 

  14. Yu J, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol. 2013;190(7):3783–97.

    Google Scholar 

  15. Haverkamp JM, et al. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. Immunity. 2014;41(6):947–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suzuki E, et al. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005;11(18):6713–21.

    Article  CAS  PubMed  Google Scholar 

  17. Le HK, et al. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol. 2009;9(7–8):900–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kodumudi KN, et al. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res. 2010;16(18):4583–94.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J, et al. Therapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterin. Sci Rep. 2016;6:29521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michels T, et al. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner. J Immunotoxicol. 2012;9(3):292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sevko A, et al. Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol. 2013;190(5):2464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alizadeh D, et al. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res. 2014;74(1):104–18.

    Article  CAS  PubMed  Google Scholar 

  23. Rong Y, et al. Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2. Sci Rep. 2016;6:23824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Germano G, et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013;23(2):249–62.

    Article  CAS  PubMed  Google Scholar 

  25. Filatenkov A, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21(16):3727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vincent J, et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70(8):3052–61.

    Article  CAS  PubMed  Google Scholar 

  27. Bruchard M, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med. 2013;19(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  28. Annels NE, et al. The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer. Cancer Immunol Immunother. 2014;63(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  29. Takeuchi S, et al. Chemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res. 2015;75(13):2629–40.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, et al. MDSC-decreasing chemotherapy increases the efficacy of cytokine-induced killer cell immunotherapy in metastatic renal cell carcinoma and pancreatic cancer. Oncotarget. 2016;7(4):4760–9.

    PubMed  Google Scholar 

  31. Kanterman J, et al. Adverse immunoregulatory effects of 5-FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Cancer Res. 2014;74(21):6022–35.

    Google Scholar 

  32. Limagne E, et al. Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-bevacizumab drug treatment regimen. Cancer Res. 2016;76(18):5241–52.

    Article  CAS  PubMed  Google Scholar 

  33. Martinelli E, et al. Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK. Cancer Treat Rev. 2017;53:61–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mundi PS, et al. AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol. 2016;82(4):943–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kircher SM, Nimeiri HS, Benson AB 3rd. Targeting angiogenesis in colorectal cancer: tyrosine kinase inhibitors. Cancer J. 2016;22(3):182–9.

    Article  CAS  PubMed  Google Scholar 

  36. Bikas A, et al. Targeted therapies in thyroid cancer: an extensive review of the literature. Expert Rev Clin Pharmacol. 2016;15:1–15.

    Google Scholar 

  37. Ko JS, et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009;15(6):2148–57.

    Article  CAS  PubMed  Google Scholar 

  38. Ozao-Choy J, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69(6):2514–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ko JS, et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010;70(9):3526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Cruijsen H, et al. Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clin Cancer Res. 2008;14(18):5884–92.

    Article  PubMed  CAS  Google Scholar 

  41. Heine A, et al. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and Sorafenib, but not sunitinib. Cancer Immunol Immunother. 2016;65(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  42. Shojaei F, et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol. 2007;25(8):911–20.

    Article  CAS  PubMed  Google Scholar 

  43. Rodriguez PC, et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009;69(4):1553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koinis F, et al. Effect of first-line treatment on myeloid-derived suppressor Cells’ subpopulations in the peripheral blood of patients with non-small cell lung cancer. J Thorac Oncol. 2016;11(8):1263–72.

    Article  PubMed  Google Scholar 

  45. Cao M, et al. Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab Investig. 2011;91(4):598–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chuang HY, et al. Serial low doses of Sorafenib enhance therapeutic efficacy of adoptive T cell therapy in a murine model by improving tumor microenvironment. PLoS One. 2014;9(10):e109992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Martin del Campo SE, et al. The Raf kinase inhibitor Sorafenib inhibits JAK-STAT signal transduction in human immune cells. J Immunol. 2015;195(5):1995–2005.

    Google Scholar 

  48. Giallongo C, et al. Myeloid derived suppressor cells in chronic myeloid leukemia. Front Oncol. 2015;5:107.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Christiansson L, et al. The tyrosine kinase inhibitors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses. Mol Cancer Ther. 2015;14(5):1181–91.

    Article  CAS  PubMed  Google Scholar 

  50. Larmonier N, et al. Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol. 2008;181(10):6955–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mohty M, et al. Imatinib and plasmacytoid dendritic cell function in patients with chronic myeloid leukemia. Blood. 2004;103(12):4666–8.

    Article  CAS  PubMed  Google Scholar 

  52. Wang H, et al. Imatinib mesylate (STI-571) enhances antigen-presenting cell function and overcomes tumor-induced CD4+ T-cell tolerance. Blood. 2005;105(3):1135–43.

    Article  CAS  PubMed  Google Scholar 

  53. Mumprecht S, et al. Imatinib mesylate selectively impairs expansion of memory cytotoxic T cells without affecting the control of primary viral infections. Blood. 2006;108(10):3406–13.

    Article  CAS  PubMed  Google Scholar 

  54. Lowe DB, et al. Dasatinib promotes the expansion of a therapeutically superior T-cell repertoire in response to dendritic cell vaccination against melanoma. Oncoimmunology. 2014;3(1):e27589.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fei F, et al. Dasatinib exerts an immunosuppressive effect on CD8+ T cells specific for viral and leukemia antigens. Exp Hematol. 2008;36(10):1297–308.

    Article  CAS  PubMed  Google Scholar 

  56. Steinberg SM, et al. BRAF inhibition alleviates immune suppression in murine autochthonous melanoma. Cancer Immunol Res. 2014;2(11):1044–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ngiow SF, et al. Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAFV600E melanoma. Oncoimmunology. 2016;5(3):e1089381.

    Article  PubMed  CAS  Google Scholar 

  58. Schilling B, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer. 2013;133(7):1653–63.

    Article  CAS  PubMed  Google Scholar 

  59. Sagiv-Barfi I, et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci U S A. 2015;112(9):E966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stiff A, et al. Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor-bearing hosts by Ibrutinib treatment. Cancer Res. 2016;76(8):2125–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu T, et al. mTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumors. Sci Rep. 2016;6:20250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao T, et al. Activation of mTOR pathway in myeloid-derived suppressor cells stimulates cancer cell proliferation and metastasis in lal(−/−) mice. Oncogene. 2015;34(15):1938–48.

    Article  CAS  PubMed  Google Scholar 

  63. Welte T, et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol. 2016;18(6):632–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Serafini P, et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203(12):2691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weed DT, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  66. Califano JA, et al. Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21(1):30–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Noonan KA, et al. Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol Res. 2014;2(8):725–31.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pico de Coana Y, et al. Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their Arginase1 production. Cancer Immunol Res. 2013;1(3):158–62.

    Google Scholar 

  69. Tarhini AA, et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS One. 2014;9(2):e87705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kusmartsev S, et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 2003;63(15):4441–9.

    CAS  PubMed  Google Scholar 

  71. Mirza N, et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006;66(18):9299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Iclozan C, et al. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother. 2013;62(5):909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nagaraj S, et al. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res. 2010;16(6):1812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Santo C, et al. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A. 2005;102(11):4185–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Soong RS, et al. RPN13/ADRM1 inhibitor reverses immunosuppression by myeloid-derived suppressor cells. Oncotarget. 2016;7(42):68489–502.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zoglmeier C, et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 2011;17(7):1765–75.

    Article  CAS  PubMed  Google Scholar 

  77. James BR, et al. CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer Immunol Immunother. 2014;63(11):1213–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harman MF, et al. Expansion of myeloid-derived suppressor cells with arginase activity lasts longer in aged than in young mice after CpG-ODN plus IFA treatment. Oncotarget. 2015;6(15):13448–61.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tu SP, et al. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila). 2012;5(2):205–15.

    Article  CAS  Google Scholar 

  80. Condamine T, et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest. 2014;124(6):2626–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rui K, et al. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden. Immunol Res. 2016;64(4):931–9.

    Article  CAS  PubMed  Google Scholar 

  82. He W, et al. Re-polarizing myeloid-derived suppressor cells (MDSCs) with cationic polymers for cancer immunotherapy. Sci Rep. 2016;6:24506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qin H, et al. Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nat Med. 2014;20(6):676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Holmgaard RB, et al. Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine. 2016;6:50–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mok S, et al. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res. 2014;74(1):153–61.

    Article  CAS  PubMed  Google Scholar 

  86. Xu J, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013;73(9):2782–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rosborough BR, et al. Histone deacetylase inhibition facilitates GM-CSF-mediated expansion of myeloid-derived suppressor cells in vitro and in vivo. J Leukoc Biol. 2012;91(5):701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sahakian E, et al. Histone deacetylase 11: a novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Mol Immunol. 2015;63(2):579–85.

    Article  CAS  PubMed  Google Scholar 

  89. Wang HF, et al. Histone deacetylase inhibitors deplete myeloid-derived suppressor cells induced by 4T1 mammary tumors in vivo and in vitro. Cancer Immunol Immunother. 2016;66(3):355–66.

    Article  PubMed  CAS  Google Scholar 

  90. Wang RF, Wang HY. Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res. 2017;27(1):11–37.

    Article  CAS  PubMed  Google Scholar 

  91. Menon S, Shin S, Dy G. Advances in cancer immunotherapy in solid tumors. Cancers (Basel). 2016;8(12):E106.

    Article  CAS  Google Scholar 

  92. Guo Z, et al. Combined trabectedin and anti-PD1 antibody produces a synergistic antitumor effect in a murine model of ovarian cancer. J Transl Med. 2015;13:247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Deng L, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Parikh F, et al. Chemoradiotherapy-induced upregulation of PD-1 antagonizes immunity to HPV-related oropharyngeal cancer. Cancer Res. 2014;74(24):7205–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Motoshima T, et al. Sorafenib enhances the antitumor effects of anti-CTLA-4 antibody in a murine cancer model by inhibiting myeloid-derived suppressor cells. Oncol Rep. 2015;33(6):2947–53.

    Article  CAS  PubMed  Google Scholar 

  96. Curran MA, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010;107(9):4275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Ghiringhelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruchard, M., Ghiringhelli, F. (2018). Effect of Pharmaceutical Compounds on Myeloid-Derived Suppressor Cells. In: Zitvogel, L., Kroemer, G. (eds) Oncoimmunology. Springer, Cham. https://doi.org/10.1007/978-3-319-62431-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62431-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62430-3

  • Online ISBN: 978-3-319-62431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics