Skip to main content

Consensus Clustering for Binning Metagenome Sequences

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10062))

Included in the following conference series:

  • 1133 Accesses

Abstract

The advances in next-generation sequencing technologies allow researchers to sequence in parallel millions of microbial organisms directly from environmental samples. The result of this “shotgun” sequencing are many short DNA fragments of different organisms, which constitute the basis for the field of metagenomics. Although there are big databases with known microbial DNA that allow us classify some fragments, these databases only represent around 1% of all the species existing in the entire world. For this reason, it is important to use unsupervised methods to group the fragments with the same taxonomic levels. In this paper we focus on the binning step in metagenomics in an unsupervised way. We propose a consensus clustering method based on an iterative clustering process using different lengths of sequences in the databases and a mixture of distance as approach to finding the consensus clustering. The final performance clustering is evaluated according with the purity of clusters. The results achieved by the proposed method outperforms results obtained by simple methods and iterative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riesenfeld, C.S., Schloss, P.D., Handelsman, J.: Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004)

    Article  Google Scholar 

  2. Oulas, A., et al.: Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. In: Bioinform. Biol. Insights. pp. 75–88 (2015)

    Google Scholar 

  3. Council, N.R.: The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. The National Academies Press, Washington (2007)

    Google Scholar 

  4. Chan, C.-K., et al.: Binning sequences using very sparse labels within a metagenome. BMC Bioinf. 9(1), 215 (2008)

    Article  Google Scholar 

  5. Camacho, C., et al.: BLAST + : architecture and applications. BMC Bioinf. 10(1), 421 (2009)

    Article  Google Scholar 

  6. Huson, D.H., et al.: MEGAN analysis of metagenomic data. Genome Res. 17(3), 377–386 (2007)

    Article  MathSciNet  Google Scholar 

  7. McHardy, A.C., et al.: Accurate phylogenetic classification of variable-length DNA fragments. Nat. Methods 4(1), 63–72 (2007)

    Article  Google Scholar 

  8. Diaz, N.N., et al.: TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinf. 10, 56 (2009)

    Article  Google Scholar 

  9. Rosen, G.L., Reichenberger, E., Rosenfeld, A.: NBC: The Naïve Bayes classification tool webserver for taxonomic classification of metagenomic reads. Bioinf. 27(1), 127–129 (2010)

    Article  Google Scholar 

  10. Mande, S.S., Mohammed, M.H., Ghosh, T.S.: Classification of metagenomic sequences: methods and challenges. Brief Bioinf. 13(6), 669–681 (2012)

    Article  Google Scholar 

  11. Teeling, H., et al.: TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinf. 5(1), 163 (2004)

    Article  Google Scholar 

  12. Reddy, R.M., Mohammed, M.H., Mande, S.S.: MetaCAA: A clustering-aided methodology for efficient assembly of metagenomic datasets. Genomics 103(2–3), 161–168 (2014)

    Article  Google Scholar 

  13. Abe, T., et al.: Informatics for unveiling hidden genome signatures. Genome Res. 13(4), 693–702 (2003)

    Article  Google Scholar 

  14. Chan, C.K.K., et al.: Using growing self-organising maps to improve the binning process in environmental whole-genome shotgun sequencing. J. Biomed. Biotechnol. 2008 (2008)

    Google Scholar 

  15. Nasser, S., Breland, A., Harris Jr., F.C., Nicolescu, M.: University of Nevada Reno. A Fuzzy Classifier to Taxonomically Group DNA Fragments within a Metagenome (2016). http://www.cse.unr.edu/~monica/Research/Publications/nafips2008.pdf

  16. Leung, H.C., et al.: A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio. Bioinformatics 27(11), 1489–1495 (2011)

    Article  Google Scholar 

  17. Wang, Y., et al.: MetaCluster-TA: taxonomic annotation for metagenomic data based on assembly-assisted binning. BMC Genom. 15(1), 1–9 (2014)

    Article  MathSciNet  Google Scholar 

  18. Siegel, K., et al.: Puzzlecluster: a novel unsupervised clustering algorithm for binning DNA fragments in metagenomics (2016)

    Google Scholar 

  19. Wu, Y.W., Ye, Y.: A novel abundance-based algorithm for binning metagenomic sequences using l-tuples. J. Comput. Biol. 18(3), 523–534 (2011)

    Article  MathSciNet  Google Scholar 

  20. Brady, A., Salzberg, S.L.: Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat. Methods 6(9), 673–676 (2009)

    Article  Google Scholar 

  21. Li, W., et al.: Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinf. 13(6), 656–668 (2012)

    Article  Google Scholar 

  22. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Statistics, Vol. 1, pp. 281–297. University of California Press: Berkeley, California (1967)

    Google Scholar 

  23. Arthur, D., Vassilvitskii, S.: K-Means ++: The Advantages of Careful Seeding. In: 8th Annual ACM-SIAM Symposium on Discrete Algorithms. New Orleans (2007)

    Google Scholar 

  24. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition. In: Jim Gray, M.R. (ed). . Morgan Kaufmann, San Francisco, 525 (2005)

    Google Scholar 

  25. Bonet, I., Montoya, W., Mesa-Múnera, A., Alzate, J.F.: Iterative clustering method for metagenomic sequences. In: Prasath, R., O’Reilly, P., Kathirvalavakumar, T. (eds.) MIKE 2014. LNCS, vol. 8891, pp. 145–154. Springer, Cham (2014). doi:10.1007/978-3-319-13817-6_15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isis Bonet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bonet, I., Escobar, A., Mesa-Múnera, A., Alzate, J.F. (2017). Consensus Clustering for Binning Metagenome Sequences. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds) Advances in Soft Computing. MICAI 2016. Lecture Notes in Computer Science(), vol 10062. Springer, Cham. https://doi.org/10.1007/978-3-319-62428-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62428-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62427-3

  • Online ISBN: 978-3-319-62428-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics