Skip to main content

Reverse Engineering Gene Regulatory Networks Using Sampling and Boosting Techniques

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10358))

Abstract

Reverse engineering gene regulatory networks (GRNs), also known as network inference, refers to the process of reconstructing GRNs from gene expression data. Biologists model a GRN as a directed graph in which nodes represent genes and links show regulatory relationships between the genes. By predicting the links to infer a GRN, biologists can gain a better understanding of regulatory circuits and functional elements in cells. Existing supervised GRN inference methods work by building a feature-based classifier from gene expression data and using the classifier to predict the links in GRNs. Observing that GRNs are sparse graphs with few links between nodes, we propose here to use under-sampling, over-sampling and boosting techniques to enhance the prediction performance. Experimental results on different datasets demonstrate the good performance of the proposed approach and its superiority over the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhammady, H., Ramamohanarao, K.: Using emerging patterns to construct weighted decision trees. IEEE Trans. Knowl. Data Eng. 18(7), 865–876 (2006)

    Article  Google Scholar 

  2. Altaf-Ul-Amin, M., Afendi, F.M., Kiboi, S.K., Kanaya, S.: Systems biology in the context of big data and networks. In: BioMed Research International 2014 (2014)

    Google Scholar 

  3. Altaf-Ul-Amin, M., Katsuragi, T., Sato, T., Kanaya, S.: A glimpse to background and characteristics of major molecular biological networks. In: BioMed Research International 2015 (2015)

    Google Scholar 

  4. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newslett. 6(1), 20–29 (2004)

    Article  Google Scholar 

  5. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, New York (1984)

    MATH  Google Scholar 

  6. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-Level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 475–482. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01307-2_43

    Chapter  Google Scholar 

  7. Deng, H., Runger, G.: Gene selection with guided regularized random forest. Pattern Recogn. 46(12), 3483–3489 (2013)

    Article  Google Scholar 

  8. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995). doi:10.1007/3-540-59119-2_166

    Chapter  Google Scholar 

  9. Gillani, Z., Akash, M., Rahaman, M., Chen, M.: CompareSVM: supervised, support vector machine (SVM) inference of gene regularity networks. BMC Bioinformatics 15, 395 (2014). http://dx.doi.org/10.1186/s12859-014-0395-x

    Article  Google Scholar 

  10. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  11. He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley, Piscataway (2013)

    Book  MATH  Google Scholar 

  12. Ideker, T., Krogan, N.J.: Differential network biology. Mol. Syst. Biol. 8(1), 565 (2012)

    Google Scholar 

  13. Kibinge, N., Ono, N., Horie, M., Sato, T., Sugiura, T., Altaf-Ul-Amin, M., Saito, A., Kanaya, S.: Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles. J. Biomed. Inform. 61, 194–202 (2016)

    Article  Google Scholar 

  14. Leclerc, R.D.: Survival of the sparsest: robust gene networks are parsimonious. Mol. Syst. Biol. 4(1), 213 (2008)

    Google Scholar 

  15. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 539–550 (2009)

    Article  Google Scholar 

  16. Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Nemenman, I., Califano, A.: Reverse engineering cellular networks. Nat. Protoc. 1(2), 662–671 (2006)

    Article  Google Scholar 

  17. Mordelet, F., Vert, J.P.: SIRENE: supervised inference of regulatory networks. Bioinformatics 24(16), i76–i82 (2008). http://bioinformatics.oxfordjournals.org/content/24/16/i76.abstract

    Article  Google Scholar 

  18. Patel, N., Wang, J.T.L.: Semi-supervised prediction of gene regulatory networks using machine learning algorithms. J. Biosci. 40(4), 731–740 (2015). http://dx.doi.org/10.1007/s12038-015-9558-9

    Article  Google Scholar 

  19. Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270 (2011)

    Article  Google Scholar 

  20. Turki, T., Bassett, W., Wang, J.T.L.: A learning framework to improve unsupervised gene network inference. In: Perner, P. (ed.) MLDM 2016. LNCS (LNAI), vol. 9729, pp. 28–42. Springer, Cham (2016). doi:10.1007/978-3-319-41920-6_3

    Chapter  Google Scholar 

  21. Turki, T., Ihsan, M., Turki, N., Zhang, J., Roshan, U., Wei, Z.: Top-k parametrized boost. In: Prasath, R., O’Reilly, P., Kathirvalavakumar, T. (eds.) MIKE 2014. LNCS (LNAI), vol. 8891, pp. 91–98. Springer, Cham (2014). doi:10.1007/978-3-319-13817-6_10

    Google Scholar 

  22. Turki, T., Wang, J.T.L.: A new approach to link prediction in gene regulatory networks. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 404–415. Springer, Cham (2015). doi:10.1007/978-3-319-24834-9_47

    Chapter  Google Scholar 

  23. Turki, T., Wang, J.T.L., Rajikhan, I.: Inferring gene regulatory networks by combining supervised and unsupervised methods. In: 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, Anaheim, CA, USA, 18–20 December 2016

    Google Scholar 

  24. Wang, S., Yao, X.: Relationships between diversity of classification ensembles and single-class performance measures. IEEE Trans. Knowl. Data Eng. 25(1), 206–219 (2013). http://dx.doi.org/10.1109/TKDE.2011.207

    Article  Google Scholar 

  25. Zhong, L., Wang, J.T.L., Wen, D., Aris, V., Soteropoulos, P., Shapiro, B.A.: Effective classification of microRNA precursors using feature mining and AdaBoost algorithms. OMICS: J. Integr. Biol. 17(9), 486–493 (2013)

    Article  Google Scholar 

  26. Zhong, L., Wang, J.T.L., Wen, D., Shapiro, B.A.: Pre-miRNA classification via combinatorial feature mining and boosting. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2012, Philadelphia, PA, USA, 4–7 October 2012, Proceedings, pp. 1–4 (2012). http://doi.ieeecomputersociety.org/10.1109/BIBM.2012.6392700

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Turki Turki or Jason T. L. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Turki, T., Wang, J.T.L. (2017). Reverse Engineering Gene Regulatory Networks Using Sampling and Boosting Techniques. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2017. Lecture Notes in Computer Science(), vol 10358. Springer, Cham. https://doi.org/10.1007/978-3-319-62416-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62416-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62415-0

  • Online ISBN: 978-3-319-62416-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics