Skip to main content

Global Flow and Temporal-Shape Descriptors for Human Action Recognition from 3D Reconstruction Data

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2017)

Abstract

In this paper, global-level view-invariant descriptors for human action recognition using 3D reconstruction data are proposed. 3D reconstruction techniques are employed for addressing two of the most challenging issues related to human action recognition in the general case, namely view-variance and the presence of (self-) occlusions. Initially, a set of calibrated Kinect sensors are employed for producing a 3D reconstruction of the performing subjects. Subsequently, a 3D flow field is estimated for every captured frame. For performing action recognition, a novel global 3D flow descriptor is introduced, which achieves to efficiently encode the global motion characteristics in a compact way, while also incorporating spatial distribution related information. Additionally, a new global temporal-shape descriptor that extends the notion of 3D shape descriptions for action recognition, by including temporal information, is also proposed. The latter descriptor efficiently addresses the inherent problems of temporal alignment and compact representation, while also being robust in the presence of noise. Experimental results using public datasets demonstrate the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://structure.io/openni.

  2. 2.

    http://www.microsoft.com/en-us/kinectforwindows/.

  3. 3.

    http://mmv.eecs.qmul.ac.uk/mmgc2013/.

References

  1. Borges, P.V.K., Conci, N., Cavallaro, A.: Video-based human behavior understanding: a survey. IEEE Trans. Circuits Syst. Video Technol. 23(11), 1993–2008 (2013)

    Article  Google Scholar 

  2. Budd, C., Huang, P., Klaudiny, M., Hilton, A.: Global non-rigid alignment of surface sequences. Int. J. Comput. Vis. 102(1–3), 256–270 (2013)

    Article  MathSciNet  Google Scholar 

  3. Cai, X., Zhou, W., Wu, L., Luo, J., Li, H.: Effective active skeleton representation for low latency human action recognition. IEEE Trans. Multimedia 18(2), 141–154 (2016)

    Article  Google Scholar 

  4. Cheng, Z., Qin, L., Ye, Y., Huang, Q., Tian, Q.: Human daily action analysis with multi-view and color-depth data. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7584, pp. 52–61. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33868-7_6

    Chapter  Google Scholar 

  5. Efros, A.A., Berg, A.C., Mori, G., Malik, J.: Recognizing action at a distance. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 726–733. IEEE (2003)

    Google Scholar 

  6. Fanello, S.R., Gori, I., Metta, G., Odone, F.: Keep it simple and sparse: real-time action recognition. J. Mach. Learn. Res. 14(1), 2617–2640 (2013)

    Google Scholar 

  7. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)

    Article  Google Scholar 

  8. Gori, I., Fanello, S.R., Odone, F., Metta, G.: A compositional approach for 3D arm-hand action recognition. In: 2013 IEEE Workshop on Robot Vision (WORV), pp. 126–131. IEEE (2013)

    Google Scholar 

  9. Holte, M.B., Chakraborty, B., Gonzalez, J., Moeslund, T.B.: A local 3-D motion descriptor for multi-view human action recognition from 4-D spatio-temporal interest points. IEEE J. Sel. Top. Sig. Process. 6(5), 553–565 (2012)

    Article  Google Scholar 

  10. Huang, P., Hilton, A., Starck, J.: Shape similarity for 3D video sequences of people. Int. J. Comput. Vis. 89(2–3), 362–381 (2010)

    Article  Google Scholar 

  11. Ji, X., Liu, H.: Advances in view-invariant human motion analysis: a review. IEEE Trans. Syst. Man. Cybern. Part C Appl. Rev. 40(1), 13–24 (2010)

    Google Scholar 

  12. Munaro, M., Ballin, G., Michieletto, S., Menegatti, E.: 3D flow estimation for human action recognition from colored point clouds. Biologically Inspired Cogn. Architectures 5, 42–51 (2013)

    Article  Google Scholar 

  13. Ohkita, Y., Ohishi, Y., Furuya, T., Ohbuchi, R.: Non-rigid 3D model retrieval using set of local statistical features. In: 2012 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 593–598. IEEE (2012)

    Google Scholar 

  14. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. (TOG) 21(4), 807–832 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Papadopoulos, G.T., Axenopoulos, A., Daras, P.: Real-time skeleton-tracking-based human action recognition using kinect data. In: International Conference on MultiMedia Modeling, pp. 473–483 (2014)

    Google Scholar 

  16. Papadopoulos, G.T., Daras, P.: Local descriptions for human action recognition from 3d reconstruction data. In: IEEE International Conference on Image Processing (ICIP 2014), pp. 2814–2818, November 2014

    Google Scholar 

  17. Sizintsev, M., Wildes, R.P.: Spatiotemporal stereo and scene flow via stequel matching. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1206–1219 (2012)

    Article  Google Scholar 

  18. Slama, R., Wannous, H., Daoudi, M.: 3D human motion analysis framework for shape similarity and retrieval. Image Vis. Comput. 32(2), 131–154 (2014)

    Article  Google Scholar 

  19. Sun, L., Aizawa, K.: Action recognition using invariant features under unexampled viewing conditions. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 389–392. ACM (2013)

    Google Scholar 

  20. Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  21. Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3D action recognition with random occupancy patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 872–885. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33709-3_62

    Chapter  Google Scholar 

  22. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1290–1297. IEEE (2012)

    Google Scholar 

  23. Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104(2), 249–257 (2006)

    Article  Google Scholar 

  24. Xia, L., Aggarwal, J.: Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2834–2841. IEEE (2013)

    Google Scholar 

  25. Xia, L., Chen, C.-C., Aggarwal, J.: View invariant human action recognition using histograms of 3D joints. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 20–27. IEEE (2012)

    Google Scholar 

  26. Xia, L., Gori, I., Aggarwal, J., Ryoo, M.: Robot-centric activity recognition from first-person rgb-d videos (2015)

    Google Scholar 

  27. Yamasaki, T., Aizawa, K.: Motion segmentation and retrieval for 3D video based on modified shape distribution. EURASIP J. Appl. Sig. Process. 2007(1), 211–211 (2007)

    MATH  Google Scholar 

Download references

Acknowledgment

The work presented in this paper was supported by the European Commission under contract H2020-700367 DANTE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Th. Papadopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Papadopoulos, G.T., Daras, P. (2017). Global Flow and Temporal-Shape Descriptors for Human Action Recognition from 3D Reconstruction Data. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2017. Lecture Notes in Computer Science(), vol 10358. Springer, Cham. https://doi.org/10.1007/978-3-319-62416-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62416-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62415-0

  • Online ISBN: 978-3-319-62416-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics