Skip to main content

The Importance of the Periconception Period: Immediate Effects in Cattle Breeding and in Assisted Reproduction Such as Artificial Insemination and Embryo Transfer

  • Chapter
  • First Online:
Periconception in Physiology and Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1014))

Abstract

In livestock breeding, the successful outcome is largely depending on the “periconception environment” which, in a narrow sense, refers to the genital tract, where gametogenesis and embryogenesis occur. During these early stages of development, gametes and embryos are known to be particularly sensitive to alterations in their microenvironment. However, as the microenvironment somehow reflects what is going on in the external world, we must widen our definition of “periconception environment” and refer to all events taking place around the time of conception, including metabolic state and health and nutrition of the dam. In modern dairy cows that have to manage an optimal reproductive performance with continued growth and high milk yield, the periconception period is particularly challenging. The metabolic priority for growth and lactation is known to generate adverse conditions hampering optimal ovarian function, oocyte maturation, and development of embryo/fetus. In addition, by using artificial reproductive technologies (ARTs), gametes and/or embryos of livestock are exposed to unnatural conditions outside the male and female genital tract. Artificial insemination, the most widely used technique, is currently yielding pregnancy rates similar to natural mating, and calves produced by AI are equally viable after natural mating. In contrast, other ART, such as multiple ovulation and embryo transfer, have been reported to induce changes in gene expression and DNA methylation patterns with potential consequences for development.

Finally, the “periconceptional” environment has been shown to not only influence the successful establishment of pregnancy but also the long-term health and productivity of the offspring. Hence, the optimization of management around the time of conception might open doors to improve animal production and product quality.

Focus: Discussing the immediate effects that the periconception environment can have on conception success, the rate of fertility, and the establishment of pregnancy in livestock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamiak S, Mackie K, Watt R, Webb R, Sinclair K (2005) Impact of nutrition on oocyte quality: cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. Biol Reprod 73(5):918–926. doi:10.1095/biolreprod.105.041483

    Article  CAS  PubMed  Google Scholar 

  • Anckaert E, Fair T (2015) DNA methylation reprogramming during oogenesis and interference by reproductive technologies: studies in mouse and bovine models. Reprod Fertil Dev 27(5):739–754. doi:10.1071/RD14333

    Article  CAS  PubMed  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727):1466–1469. doi:10.1126/science.1108190

    Article  CAS  PubMed  Google Scholar 

  • Anway MD, Skinner MK (2008) Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease. Prostate 68(5):517–529. doi:10.1002/pros.20724

    Article  CAS  PubMed  Google Scholar 

  • Banos G, Brotherstone S, Coffey MP (2007) Prenatal maternal effects on body condition score, female fertility, and milk yield of dairy cows. J Dairy Sci 90(7):3490–3499. doi:10.3168/jds.2006-809

    Article  CAS  PubMed  Google Scholar 

  • Beaujean N, Taylor J, Gardner J, Wilmut I, Meehan R, Young L (2004) Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod 71(1):185–193. doi:10.1095/biolreprod.103.026559

    Article  CAS  PubMed  Google Scholar 

  • Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A (2010) Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc Natl Acad Sci 107(8):3394–3399. doi:10.1073/pnas.0913843107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry D, Cromie A (2007) Artificial insemination increases the probability of a male calf in dairy and beef cattle. Theriogenology 67(2):346–352. doi:10.1016/j.theriogenology.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  • Boni R, Tosti E, Roviello S, Dale B (1999) Intercellular communication in in vivo-and in vitro-produced bovine embryos. Biol Reprod 61(4):1050–1055. doi:10.1095/biolreprod61.4.1050

    Article  CAS  PubMed  Google Scholar 

  • Bossaert P, De Cock H, Leroy J, De Campeneere S, Bols P, Filliers M, Opsomer G (2010) Immunohistochemical visualization of insulin receptors in formalin-fixed bovine ovaries post mortem and in granulosa cells collected in vivo. Theriogenology 73(9):1210–1219. doi:10.1016/j.theriogenology.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  • Bossaert P, Leroy J, De Vliegher S, Opsomer G (2008) Interrelations between glucose-induced insulin response, metabolic indicators, and time of first ovulation in high-yielding dairy cows. J Dairy Sci 91(9):3363–3371. doi:10.3168/jds.2008-0994

    Article  CAS  PubMed  Google Scholar 

  • Bowley F, Green R, Amer P, Meier S (2015) Novel approaches to genetic analysis of fertility traits in New Zealand dairy cattle. J Dairy Sci 98(3):2005–2012. doi:10.3168/jds.2014-8266

    Article  CAS  PubMed  Google Scholar 

  • Brickell J, Bourne N, McGowan M, Wathes D (2009) Effect of growth and development during the rearing period on the subsequent fertility of nulliparous Holstein-Friesian heifers. Theriogenology 72(3):408–416. doi:10.1016/j.theriogenology.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  • Britt JH (2008) Oocyte development in cattle: physiological and genetic aspects. Rev Bras Zootec 37(SPE):110–115. doi:10.1590/S1516-35982008001300013

    Article  Google Scholar 

  • Bromfield J, Santos J, Block J, Williams R, Sheldon I (2015) PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Uterine infection: linking infection and innate immunity with infertility in the high-producing dairy cow. J Anim Sci 93(5):2021–2033. doi:10.2527/jas.2014-8496

    Article  CAS  PubMed  Google Scholar 

  • Buckley F, Mee J, O’Sullivan K, Evans R, Berry D, Dillon P (2003) Insemination factors affecting the conception rate in seasonal calving Holstein-Friesian cows. Reprod Nutr Dev 43(6):543–555. doi:10.1051/rnd:2004002

    Article  PubMed  Google Scholar 

  • Burthe S, Butler A, Searle KR, Hall SJ, Thackeray SJ, Wanless S (2011) Demographic consequences of increased winter births in a large a seasonally breeding mammal (Bos taurus) in response to climate change. J Anim Ecol 80(6):1134–1144. doi:10.1111/j.1365-2656.2011.01865.x

    Article  PubMed  Google Scholar 

  • Carvalho P, Souza A, Sartori R, Hackbart K, Dresch A, Vieira L, Baruselli P, Guenther J, Fricke P, Shaver R (2013) Effects of deep-horn AI on fertilization and embryo production in superovulated cows and heifers. Theriogenology 80(9):1074–1081. doi:10.1016/j.theriogenology.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Hagen DE, Elsik CG, Ji T, Morris CJ, Moon LE, Rivera RM (2015) Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proc Natl Acad Sci 112(15):4618–4623. doi:10.1073/pnas.1422088112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Robbins KM, Wells KD, Rivera RM (2013) Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann. Epigenetics 8(6):591–601. doi:10.4161/epi.24655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong SH, Sá Filho OG, Absalón-Medina VA, Pelton SH, Butler WR, Gilbert RO (2015) Metabolic and endocrine differences between dairy cows that do or do not ovulate first postpartum dominant follicles. Biol Reprod 114:18. doi:10.1095/biolreprod.114.127076

    Google Scholar 

  • Chu T, Dufort I, Sirard M-A (2012) Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology 77(9):1928–1938. doi:10.1016/j.theriogenology.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  • Cools S, Van Den Broeck W, Vanhaecke L, Heyerick A, Bossaert P, Hostens M, Opsomer G (2014) Feeding soybean meal increases the blood level of isoflavones and reduces the steroidogenic capacity in bovine corpora lutea, without affecting peripheral progesterone concentrations. Anim Reprod Sci 144(3):79–89. doi:10.1016/j.anireprosci.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  • Corcoran D, Fair T, Park S, Rizos D, Patel O, Smith G, Coussens P, Ireland J, Boland M, Evans A (2006) Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduction 131(4):651–660. doi:10.1530/rep.1.01015

    Article  CAS  PubMed  Google Scholar 

  • Corcoran D, Rizos D, Fair T, Evans AC, Lonergan P (2007) Temporal expression of transcripts related to embryo quality in bovine embryos cultured from the two-cell to blastocyst stage in vitro or in vivo. Mol Reprod Dev 74(8):972–977. doi:10.1002/mrd.20677

    Article  CAS  PubMed  Google Scholar 

  • Dean W, Santos F, Reik W (2003) Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol 14(1):93–100. doi:10.1016/S1084-9521(02)00141-6

    Article  CAS  PubMed  Google Scholar 

  • Delesa EK, Yohannes A, Alemayehu M, Samuel T, Yehualaeshet T (2014) Calves’ sex ratio in naturally and artificially bred cattle in central Ethiopia. Theriogenology 82(3):433–439. doi:10.1016/j.theriogenology.2014.04.027

    Article  PubMed  Google Scholar 

  • Den Daas J, De Jong G, Lansbergen L, Van Wagtendonk-De Leeuw A (1998) The relationship between the number of spermatozoa inseminated and the reproductive efficiency of individual dairy bulls. J Dairy Sci 81(6):1714–1723. doi:10.3168/jds.S0022-0302(98)75739-x

    Article  Google Scholar 

  • Dobson H, Smith R, Royal M, Knight C, Sheldon I (2007) The high-producing dairy cow and its reproductive performance. Reprod Domest Anim 42(s2):17–23. doi:10.1111/j.1439-0531.2007.00906.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62(6):1526–1535. doi:10.1095/biolreprod62.6.1526

    Article  CAS  PubMed  Google Scholar 

  • Driver AM, Peñagaricano F, Huang W, Ahmad KR, Hackbart KS, Wiltbank MC, Khatib H (2012) RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics 13(1):1. doi:10.1186/1471-2164-13-118

    Article  CAS  Google Scholar 

  • Duby R, Hill J, O’Callaghan D, Overstrom E, Boland M (1997) Changes induced in the bovine zona pellucida by ovine and bovine oviducts. Theriogenology 1(47):332. doi:10.1016/S0093-691X(97)82459-4

    Article  Google Scholar 

  • Erickson B (1966) Development and senescence of the postnatal bovine ovary. J Anim Sci 25(3):800–805. doi:10.2527/jas1966.253800x

    Article  CAS  PubMed  Google Scholar 

  • Evans G (1988) Current topics in artificial insemination of sheep. Aust J Biol Sci 41(1):103–116

    CAS  PubMed  Google Scholar 

  • Fortier AL, Lopes FL, Darricarrère N, Martel J, Trasler JM (2008) Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet 17(11):1653–1665. doi:10.1093/hmg/ddn055

    Article  CAS  PubMed  Google Scholar 

  • Fouladi-Nashta A, Gutierrez C, Garnsworthy P, Webb R (2005) Effects of dietary carbohydrate source on oocyte/embryo quality and development in high-yielding, lactating dairy cattle. Biol Reprod (special issue):135–136

    Google Scholar 

  • Funston R, Deutscher G (2004) Comparison of target breeding weight and breeding date for replacement beef heifers and effects on subsequent reproduction and calf performance. J Anim Sci 82(10):3094–3099. doi:10.2527/2004.82103094x

    Article  CAS  PubMed  Google Scholar 

  • Funston R, Martin J, Larson D, Roberts A (2012) Physiology and endocrinology symposium: nutritional aspects of developing replacement heifers. J Anim Sci 90(4):1166. doi:10.2527/jas.2011-4569

    Article  CAS  PubMed  Google Scholar 

  • Garnsworthy P, Fouladi-Nashta A, Mann G, Sinclair K, Webb R (2009) Effect of dietary-induced changes in plasma insulin concentrations during the early post partum period on pregnancy rate in dairy cows. Reproduction 137(4):759–768. doi:10.1530/REP-08-0488

    Article  CAS  PubMed  Google Scholar 

  • Gauly M, Bollwein H, Breves G, Brügemann K, Dänicke S, Daş G, Demeler J, Hansen H, Isselstein J, König S (2013) Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe–a review. Animal 7(05):843–859. doi:10.1017/S1751731112002352

    Article  CAS  PubMed  Google Scholar 

  • Ghanem N, Wondim DS, Tesfaye D, Gad AY, Phatsara C, Tholen E, Looft C, Schellander K, Hoelker M (2011) Bovine blastocysts with developmental competence to term share similar expression of developmentally important genes although derived from different culture environments. Reproduction 142(4):551–564. doi:10.1530/REP-10-0476

    Article  CAS  PubMed  Google Scholar 

  • Gjørret JO, Knijn HM, Dieleman SJ, Avery B, Larsson L-I, Maddox-Hyttel P (2003) Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol Reprod 69(4):1193–1200. doi:10.1095/biolreprod.102.013243

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Lee W, Garnsworthy P, Webb R (2002) Effect of dietary-induced increases in circulating insulin concentrations during the early postpartum period on reproductive function in dairy cows. Reproduction 123(3):419–427. doi:10.1530/reprod/123.3.419

    Article  CAS  PubMed  Google Scholar 

  • González-Recio O, Ugarte E, Bach A (2012) Trans-generational effect of maternal lactation during pregnancy: a Holstein cow model. PLoS One 7(12):e51816. doi:10.1371/journal.pone.0051816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez-Adan A, Lonergan P, Rizos D, Ward F, Boland M, Pintado B, De La Fuente J (2001) Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology 55(5):1117–1126. doi:10.1016/s0093-691x(01)00471-x

    Article  CAS  PubMed  Google Scholar 

  • Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60(1):5–20. doi:10.1093/bmb/60.1.5

    Article  CAS  PubMed  Google Scholar 

  • Harvey A, Kind K, Pantaleon M, Armstrong D, Thompson J (2004) Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod 71(4):1108–1119. doi:10.1095/biolreprod.104.028639

    Article  CAS  PubMed  Google Scholar 

  • Heinzmann J, Hansmann T, Herrmann D, Wrenzycki C, Zechner U, Haaf T, Niemann H (2011) Epigenetic profile of developmentally important genes in bovine oocytes. Mol Reprod Dev 78(3):188–201. doi:10.1002/mrd.21281

    Article  CAS  PubMed  Google Scholar 

  • Heras S, De Coninck DI, Van Poucke M, Goossens K, Pascottini OB, Van Nieuwerburgh F, Deforce D, De Sutter P, Leroy JL, Gutierrez-Adan A (2016) Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC Genomics 17(1):1. doi:10.1186/s12864-016-2393-z

    Article  CAS  Google Scholar 

  • Hostens M, Fievez V, Vlaeminck B, Buyse J, Leroy J, Piepers S, De Vliegher S, Opsomer G (2011) The effect of marine algae in the ration of high-yielding dairy cows during transition on metabolic parameters in serum and follicular fluid around parturition. J Dairy Sci 94(9):4603–4615. doi:10.3168/jds.2010-3899

    Article  CAS  PubMed  Google Scholar 

  • Ibánez L, Lopez-Bermejo A, Callejo J, Torres A, Cabré S, Dunger D, de Zegher F (2008) Polycystic ovaries in nonobese adolescents and young women with ovarian androgen excess: relation to prenatal growth. J Clin Endocrinol Metabol 93(1):196–199. doi:10.1210/jc.2007-1800

    Article  CAS  Google Scholar 

  • Khurana NK, Niemann H (2000) Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol Reprod 62(4):847–856. doi:10.1095/biolreprod62.4.847

    Article  CAS  PubMed  Google Scholar 

  • Knight C, Beever D, Sorensen A (2000) Metabolic loads to be expected from different genotypes under different systems. Br Soc Anim Sci Occasional Publication 24:27–36

    Google Scholar 

  • Lazzari G, Wrenzycki C, Herrmann D, Duchi R, Kruip T, Niemann H, Galli C (2002) Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod 67(3):767–775. doi:10.1095/biolreprod.102.004481

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc S (2010) Monitoring metabolic health of dairy cattle in the transition period. J Reprod Dev 56(S):S29–S35. doi:10.1262/jrd.1056S29

    Article  PubMed  Google Scholar 

  • Lemley C, Butler S, Butler W, Wilson M (2008) Short communication: insulin alters hepatic progesterone catabolic enzymes cytochrome P450 2C and 3A in dairy cows. J Dairy Sci 91(2):641–645. doi:10.3168/jds.2007-0636

    Article  CAS  PubMed  Google Scholar 

  • Leroy J, Opsomer G, Van Soom A, Goovaerts I, Bols P (2008a) Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part I the importance of negative energy balance and altered corpus luteum function to the reduction of oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43(5):612–622. doi:10.1111/j.1439-0531.2007.00960.x

    Article  CAS  PubMed  Google Scholar 

  • Leroy J, Van Soom A, Opsomer G, Goovaerts I, Bols P (2008b) Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43(5):623–632. doi:10.1111/j.1439-0531.2007.00961.x

    Article  CAS  PubMed  Google Scholar 

  • Leroy J, Vanholder T, Van Knegsel A, Garcia-Ispierto I, Bols P (2008c) Nutrient prioritization in dairy cows early postpartum: mismatch between metabolism and fertility? Reprod Domest Anim 43(s2):96–103. doi:10.1111/j.1439-0531.2008.01148.x

    Article  PubMed  Google Scholar 

  • Leroy J, Sturmey R, Van Hoeck V, De Bie J, McKeegan P, Bols P (2014) Dietary fat supplementation and the consequences for oocyte and embryo quality: hype or significant benefit for dairy cow reproduction? Reprod Domest Anim 49(3):353–361. doi:10.1111/rda.12308

    Article  CAS  PubMed  Google Scholar 

  • Leroy J, Vanholder T, Delanghe J, Opsomer G, Van Soom A, Bols P, Dewulf J, de Kruif A (2004) Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum. Theriogenology 62(6):1131–1143. doi:10.1016/j.theriogenology.2003.12.017

    Article  CAS  PubMed  Google Scholar 

  • Leroy J, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, Genicot G, Van Soom A (2005) Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130(4):485–495. doi:10.1530/rep.1.00735

    Article  CAS  PubMed  Google Scholar 

  • Leroy J, Vanholder T, Opsomer G, Van Soom A, Ad K (2006) The In Vitro development of bovine oocytes after maturation in glucose and β-hydroxybutyrate concentrations associated with negative energy balance in dairy cows. Reprod Domest Anim 41(2):119–123. doi:10.1111/j.1439-0531.2006.00650.x

    Article  CAS  PubMed  Google Scholar 

  • Leroy JL, Valckx SD, Jordaens L, De Bie J, Desmet KL, Van Hoeck V, Britt JH, Marei WF, Bols PE (2015) Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod Fertil Dev 27(4):693–703. doi:10.1071/RD14363

    Article  CAS  PubMed  Google Scholar 

  • Lillycrop KA, Burdge GC (2012) Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab 26(5):667–676. doi:10.1016/j.beem.2012.03.009

    Article  PubMed  Google Scholar 

  • Liu S, Feng HL, Marchesi D, Chen Z-J, Hershlag A (2011) Effect of gonadotropins on dynamic events and global deoxyribonucleic acid methylation during in vitro maturation of oocytes: an animal model. Fertil Steril 95(4):1503–6.e1-3. doi:10.1016/j.fertnstert.2010.09.049

    Article  CAS  PubMed  Google Scholar 

  • Lonergan P, Forde N (2015) The role of progesterone in maternal recognition of pregnancy in domestic ruminants. In: Regulation of implantation and establishment of pregnancy in mammals. Springer, Switzerland, pp 87–104. https://link.springer.com/chapter/10.1007/978-3-319-15856-3_6

  • Lonergan P, Gutiérrez-Adán A, Rizos D, Pintado B, De La Fuente J, Boland MP (2003a) Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 hr after the preovulatory luteinizing hormone surge. Mol Reprod Dev 66(3):297–305. doi:10.1002/mrd.10357

    Article  CAS  PubMed  Google Scholar 

  • Lonergan P, Rizos D, Gutierrez-Adan A, Moreira P, Pintado B, De La Fuente J, Boland M (2003b) Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biol Reprod 69(4):1424–1431. doi:10.1095/biolreprod.103.018168

    Article  CAS  PubMed  Google Scholar 

  • Lonergan P, Pedersen HG, Rizos D, Greve T, Thomsen PD, Fair T, Evans A, Boland MP (2004) Effect of the post-fertilization culture environment on the incidence of chromosome aberrations in bovine blastocysts. Biol Reprod 71(4):1096–1100. doi:10.1095/biolreprod.104.030635

    Article  CAS  PubMed  Google Scholar 

  • Marett L, Auldist M, Moate P, Wales W, Macmillan K, Dunshea F, Leury B (2015) Response of plasma glucose, insulin, and nonesterified fatty acids to intravenous glucose tolerance tests in dairy cows during a 670-day lactation. J Dairy Sci 98(1):179–189. doi:10.3168/jds.2014-8205

    Article  CAS  PubMed  Google Scholar 

  • Market-Velker B, Fernandes A, Mann M (2010a) Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol Reprod 83(6):938–950. doi:10.1095/biolreprod.110.085480

    Article  CAS  PubMed  Google Scholar 

  • Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR (2010b) Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 19(1):36–51. doi:10.1093/hmg/ddp465

    Article  CAS  PubMed  Google Scholar 

  • Martin GB, Kadokawa H (2006) "Clean, green and ethical" animal production. Case study: reproductive efficiency in small ruminants. J Reprod Dev 52(1):145–152. doi:10.1262/jrd.17086-2

    Article  PubMed  Google Scholar 

  • Massip A, Mermillod P, Van Langendonckt A, Reichenbach H, Lonergan P, Berg U, Carolan C, De Roover R, Brem G (1996) Calving outcome following transfer of embryos produced in vitro in different conditions. Anim Reprod Sci 44(1):1–10. doi:10.1016/0378-4320(95)01467-5

    Article  Google Scholar 

  • Meirelles C, Kozicki LE, Weiss RR, Segui MS, Souza A, dos Santos IW, dos Santos Breda JC (2012) Comparison between deep intracornual artificial insemination (dIAI) and conventional artificial insemination (AI) using low concentration of spermatozoa in beef cattle. Braz Arch Biol Technol 55(3):371–374. doi:10.1590/S1516-89132012000300006

    Article  Google Scholar 

  • Miller DJ, Eckert JJ, Lazzari G, Duranthon-Richoux V, Sreenan J, Morris D, Galli C, Renard J-P, Fleming TP (2003) Tight junction messenger RNA expression levels in bovine embryos are dependent upon the ability to compact and in vitro culture methods. Biol Reprod 68(4):1394–1402. doi:10.1095/biolreprod.102.009951

    Article  CAS  PubMed  Google Scholar 

  • Morton K, Herrmann D, Sieg B, Struckmann C, Maxwell W, Rath D, Evans G, Lucas-Hahn A, Niemann H, Wrenzycki C (2007) Altered mRNA expression patterns in bovine blastocysts after fertilisation in vitro using flow-cytometrically sex-sorted sperm. Mol Reprod Dev 74(8):931–940. doi:10.1002/mrd.20573

    Article  CAS  PubMed  Google Scholar 

  • Mulligan F, O’Grady L, Rice D, Doherty M (2006) A herd health approach to dairy cow nutrition and production diseases of the transition cow. Anim Reprod Sci 96(3):331–353. doi:10.1016/j.anireprosci.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  • Opsomer G, Coryn M, Deluyker H, Ad K (1998) An analysis of ovarian dysfunction in high yielding dairy cows after calving based on progesterone profiles. Reprod Domest Anim 33(3–4):193–204. doi:10.1111/j.1439-0531.1998.tb01342.x

    Article  CAS  Google Scholar 

  • Opsomer G, Gröhn Y, Hertl J, Coryn M, Deluyker H, de Kruif A (2000) Risk factors for post partum ovarian dysfunction in high producing dairy cows in Belgium: a field study. Theriogenology 53(4):841–857. doi:10.1016/S0093-691X(00)00234-x

    Article  CAS  PubMed  Google Scholar 

  • Pollard J, Leibo S (1994) Chilling sensitivity of mammalian embryos. Theriogenology 41(1):101–106. doi:10.1016/s0093-691x(05)80054-8

    Article  Google Scholar 

  • Pontes G, Monteiro P, Prata A, Guardieiro M, Pinto D, Fernandes G, Wiltbank M, Santos J, Sartori R (2015) Effect of injectable vitamin E on incidence of retained fetal membranes and reproductive performance of dairy cows. J Dairy Sci 98(4):2437–2449. doi:10.3168/jds.2014-8886

    Article  CAS  PubMed  Google Scholar 

  • Rawlings N, Evans A, Chandolia R, Bagu E (2008) Sexual maturation in the bull. Reprod Domest Anim 43(s2):295–301. doi:10.1111/j.1439-0531.2008.01177.x

    Article  PubMed  Google Scholar 

  • Reynolds LP, Caton JS, Redmer DA, Grazul-Bilska AT, Vonnahme KA, Borowicz PP, Luther JS, Wallace JM, Wu G, Spencer TE (2006) Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol 572(1):51–58. doi:10.1113/jphysiol.2005.104430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro E, Gomes G, Greco L, Cerri R, Vieira-Neto A, Monteiro P, Lima F, Bisinotto R, Thatcher W, Santos J (2016) Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. J Dairy Sci 99(3):2201–2220. doi:10.3168/jds.2015-10337

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro E, Lima F, Greco L, Bisinotto R, Monteiro A, Favoreto M, Ayres H, Marsola R, Martinez N, Thatcher W (2013) Prevalence of periparturient diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with concentrates. J Dairy Sci 96(9):5682–5697. doi:10.3168/jds.2012-6335

    Article  CAS  PubMed  Google Scholar 

  • Rizos D, Gutierrez-Adan A, Perez-Garnelo S, De La Fuente J, Boland M, Lonergan P (2003) Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod 68(1):236–243. doi:10.1095/biolreprod.102.007799

    Article  CAS  PubMed  Google Scholar 

  • Rizos D, Lonergan P, Boland M, Arroyo-Garcia R, Pintado B, De La Fuente J, Gutierrez-Adan A (2002) Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol Reprod 66(3):589–595. doi:10.1095/biolreprod66.3.589

    Article  CAS  PubMed  Google Scholar 

  • Robinson J, McDonald I, Fraser C, Crofts R (1977) Studies on reproduction in prolific ewes. J Agric Sci 88(03):539–552. doi:10.1017/S0021859600037229

    Article  Google Scholar 

  • Rooke J, Ainslie A, Watt R, Alink F, McEvoy T, Sinclair K, Garnsworthy P, Webb R (2009) Dietary carbohydrates and amino acids influence oocyte quality in dairy heifers. Reprod Fertil Dev 21(3):419–427. doi:10.1071/RD08193

    Article  CAS  PubMed  Google Scholar 

  • Roth Z (2008) Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential strategies to improve fertility in dairy cows. Reprod Domest Anim 43(s2):238–244. doi:10.1111/j.1439-0531.2008.01168.x

    Article  PubMed  Google Scholar 

  • Saacke R (2008) Sperm morphology: its relevance to compensable and uncompensable traits in semen. Theriogenology 70(3):473–478. doi:10.1016/j.theriogenology.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  • Sagirkaya H, Misirlioglu M, Kaya A, First NL, Parrish JJ, Memili E (2006) Developmental and molecular correlates of bovine preimplantation embryos. Reproduction 131(5):895–904. doi:10.1530/rep.1.01021

    Article  CAS  PubMed  Google Scholar 

  • Salilew-Wondim D, Fournier E, Hoelker M, Saeed-Zidane M, Tholen E, Looft C, Neuhoff C, Besenfelder U, Havlicek V, Rings F (2015) Genome-wide DNA methylation patterns of bovine blastocysts developed In Vivo from embryos completed different stages of development In Vitro. PLoS One 10(11):e0140467. doi:10.1371/journal.pone.0140467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos J, Bisinotto R, Ribeiro E, Lima F, Greco L, Staples C, Thatcher W (2010) Applying nutrition and physiology to improve reproduction in dairy cattle. Soc Reprod Fertil Suppl 67:387–403. doi:10.5661/rdr-vii-387

    CAS  PubMed  Google Scholar 

  • Schneider S, Kaufmann W, Buesen R, van Ravenzwaay B (2008) Vinclozolin—the lack of a transgenerational effect after oral maternal exposure during organogenesis. Reprod Toxicol 25(3):352–360. doi:10.1016/j.reprotox.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  • Seidel GE, Garner DL (2002) Current status of sexing mammalian spermatozoa. Reproduction 124(6):733–743. doi:10.1530/rep.0.1240733

    Article  CAS  PubMed  Google Scholar 

  • Shahinfar S, Page D, Guenther J, Cabrera V, Fricke P, Weigel K (2014) Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms. J Dairy Sci 97(2):731–742. doi:10.3168/jds.2013-6693

    Article  CAS  PubMed  Google Scholar 

  • Sheldon I, Noakes D, Rycroft A, Pfeiffer D, Dobson H (2002) Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 123(6):837–845. doi:10.1530/rep.0.1230837

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Dirim F, Wolf E, Zakhartchenko V, Haaf T (2004) Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol Reprod 71(1):340–347. doi:10.1095/biolreprod.103.024554

    Article  CAS  PubMed  Google Scholar 

  • Sinclair KD, McEvoy T, Maxfield E, Maltin C, Young L, Wilmut I, Broadbent P, Robinson J (1999) Aberrant fetal growth and development after in vitro culture of sheep zygotes. J Reprod Fertil 116(1):177–186. doi:10.1530/jrf.0.1160177

    Article  CAS  PubMed  Google Scholar 

  • Standerholen FB, Waterhouse KE, Larsgard AG, Garmo RT, Myromslien FD, Sunde J, Ropstad E, Klinkenberg G, Kommisrud E (2015) Use of immobilized cryopreserved bovine semen in a blind artificial insemination trial. Theriogenology 84(3):413–420. doi:10.1016/j.theriogenology.2015.03.028

    Article  CAS  PubMed  Google Scholar 

  • Stouder C, Deutsch S, Paoloni-Giacobino A (2009) Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod Toxicol 28(4):536–541. doi:10.1016/j.reprotox.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  • Swali A, Wathes DC (2007) Influence of primiparity on size at birth, growth, the somatotrophic axis and fertility in dairy heifers. Anim Reprod Sci 102(1):122–136. doi:10.1016/j.anireprosci.2006.10.012

    Article  CAS  PubMed  Google Scholar 

  • Tamminga S, Luteijn P, Meijer R (1997) Changes in composition and energy content of liveweight loss in dairy cows with time after parturition. Livest Prod Sci 52(1):31–38. doi:10.1016/S0301-6226(97)00115-2

    Article  Google Scholar 

  • Thibier M (2005) The zootechnical applications of biotechnology in animal reproduction: current methods and perspectives. Reprod Nutr Dev 45(3):235–242. doi:10.1051/rnd:2005016

    Article  PubMed  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179(4068):90–92. doi:10.1126/science.179.4068.90

    Article  CAS  PubMed  Google Scholar 

  • Van Soom A, Bols P, Boerjan M, Ysebaert M, de Kruif A (1997a) Morphology and/or hatching ability of in vitro produced bovine embryos is no reliable indicator of inner cell mass cell number. Theriogenology 47(1):302–302. doi:10.1016/s0093-691x(97)82429-6

    Article  Google Scholar 

  • Van Soom A, Ysebaert MT, de Kruif A (1997b) Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol Reprod Dev 47(1):47–56. doi:10.1002/(sici)1098-2795(199705)47:1<47::aid-mrd7>3.0.co;2-q

    Article  PubMed  Google Scholar 

  • Vandaele L, Mateusen B, Maes D, de Kruif A, Van Soom A (2006) Is apoptosis in bovine in vitro produced embryos related to early developmental kinetics and in vivo bull fertility? Theriogenology 65(9):1691–1703. doi:10.1016/j.theriogenology.2005.09.014

    Article  PubMed  Google Scholar 

  • Vanholder T, Leroy J, Dewulf J, Duchateau L, Coryn M, Kruif AD, Opsomer G (2005a) Hormonal and metabolic profiles of high-yielding dairy cows prior to ovarian cyst formation or first ovulation post partum. Reprod Domest Anim 40(5):460–467. doi:10.1111/j.1439-0531.2005.00601.x

    Article  CAS  PubMed  Google Scholar 

  • Vanholder T, Leroy J, Van Soom A, Opsomer G, Maes D, Coryn M, de Kruif A (2005b) Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim Reprod Sci 87(1):33–44. doi:10.1016/j.anireprosci.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • Vanholder T, Leroy JL, Van Soom A, Maes D, Coryn M, Fiers T, de Kruif A, Opsomer G (2006) Effect of non-esterified fatty acids on bovine theca cell steroidogenesis and proliferation in vitro. Anim Reprod Sci 92(1):51–63. doi:10.1016/j.anireprosci.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  • Vazquez JM, Roca J, Gil MA, Cuello C, Parrilla I, Vazquez JL, Martínez EA (2008) New developments in low-dose insemination technology. Theriogenology 70(8):1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Velker BAM, Denomme MM, Mann MR (2012a) Embryo culture and epigenetics. Methods Mol Biol 912:399–421. doi:10.1007/978-1-61779-971-6_23

    CAS  PubMed  Google Scholar 

  • Velker BAM, Denomme MM, Mann MR (2012b) Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol Reprod 86(5):143. doi:10.1095/biolreprod.111.096602

    Google Scholar 

  • Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ (2015) In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 48(1):1. doi:10.1186/s40659-015-0059-y

    Article  Google Scholar 

  • Verberckmoes S, Van Soom A, Dewulf J, Thys M, de Kruif A (2005) Low dose insemination in cattle with the Ghent device. Theriogenology 64(8):1716–1728. doi:10.1016/j.theriogenology.2005.04.017

    Article  PubMed  Google Scholar 

  • Viuff D, Avery B, Greve T, King W, Hyttel P (1996) Transcriptional activity in in vitro produced bovine two-and four-cell embryos. Mol Reprod Dev 43(2):171–179. doi:10.1002/(sici)1098-2795(199602)43:2<171::aid-mrd6>3.0.co;2-o

    Article  CAS  PubMed  Google Scholar 

  • Vonnahme KA, Evoniuk J, Johnson ML, Borowicz PP, Luther JS, Pant D, Redmer DA, Reynolds LP, Grazul-Bilska AT (2008) Placental vascularity and growth factor expression in singleton, twin, and triplet pregnancies in the sheep. Endocrine 33(1):53–61. doi:10.1007/s12020-008-9052-3

    Article  CAS  PubMed  Google Scholar 

  • Wallace J, Luther J, Milne J, Aitken R, Redmer D, Reynolds L, Hay W (2006) Nutritional modulation of adolescent pregnancy outcome–a review. Placenta 27:61–68. doi:10.1016/j.placenta.2005.12.002

    Article  CAS  Google Scholar 

  • Wang Z, Xu L, He F (2010) Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil Steril 93(8):2729–2733

    Google Scholar 

  • Wathes D (2012) Mechanisms linking metabolic status and disease with reproductive outcome in the dairy cow. Reprod Domest Anim 47(s4):304–312. doi:10.1111/j.1439-0531.2012.02090.x

    Article  PubMed  Google Scholar 

  • Wathes D, Pollott G, Johnson K, Richardson H, Cooke J (2014) Heifer fertility and carry over consequences for life time production in dairy and beef cattle. Animal 8(s1):91–104. doi:10.1017/S1751731114000755

    Article  PubMed  Google Scholar 

  • Wiltbank M, Garcia-Guerra A, Carvalho P, Hackbart K, Bender R, Souza A, Toledo M, Baez G, Surjus R, Sartori R (2014) Effects of energy and protein nutrition in the dam on embryonic development. Anim Reprod 11(3):168–182

    Google Scholar 

  • Wiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monteiro PL, Melo LF, Ochoa JC, Santos JE, Sartori R (2016) Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 86(1):239–253. doi:10.1016/j.theriogenology.2016.04.037

    Article  PubMed  Google Scholar 

  • Wooding P, Burton G (2008) Comparative placentation: structures, functions and evolution. Springer Science & Business Media, Berlin, Heidelberg. doi:10.1007/978-3-540-78797-6

    Book  Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Board-invited review: intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84(9):2316–2337. doi:10.2527/jas.2006-156

    Article  CAS  PubMed  Google Scholar 

  • Young LE, Sinclair KD, Wilmut I (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3(3):155–163. doi:10.1530/ror.0.0030155

    Article  CAS  PubMed  Google Scholar 

  • Zaitseva I, Zaitsev S, Alenina N, Bader M, Krivokharchenko A (2007) Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev 74(10):1255–1261. doi:10.1002/mrd.20704

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Hao H, Du W, Zhu H (2015) Effect of Vitrification on the MicroRNA Transcriptome in mouse blastocysts. PLoS One 10(4):e0123451. doi:10.1371/journal.pone.0123451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors are members of the COST Action FA1201 Epiconcept.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Van Soom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Van Eetvelde, M., Heras, S., Leroy, J.L.M.R., Van Soom, A., Opsomer, G. (2017). The Importance of the Periconception Period: Immediate Effects in Cattle Breeding and in Assisted Reproduction Such as Artificial Insemination and Embryo Transfer. In: Fazeli, A., Holt, W. (eds) Periconception in Physiology and Medicine. Advances in Experimental Medicine and Biology, vol 1014. Springer, Cham. https://doi.org/10.1007/978-3-319-62414-3_3

Download citation

Publish with us

Policies and ethics