Skip to main content

Introduction: A Brief Guide to the Periconception Environment

  • Chapter
  • First Online:
Periconception in Physiology and Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1014))

Abstract

Definition of the periconception period is not an exact science and is probably somewhat arbitrary. One can define it as spanning the period from the final stages of gamete maturation until formation of the embryo and the stages of embryonic development and implantation. Hence, the periconception period includes periods when spermatozoa are in the female reproductive tract, oocytes are matured and ovulated into the oviduct, fertilization occurs and the embryo undergoes development. By definition the implantation process and the early stages of placenta formation are also regarded as a part of the periconception period. In this article we highlight a few of the major advances which have transformed this topic over the last two decades. It is now clear that the fitness and wellbeing of developing mammalian embryos, including the human, are highly dependent on the health status, diet and habits of both parents especially in the months and weeks that precede the formation of oocytes and spermatozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldarmahi A, Elliott S, Russell J, Klonisch T, Hombach-Klonisch S, Fazeli A (2012) Characterisation of an in vitro system to study maternal communication with spermatozoa. Reprod Fertil Dev 24(7):988–998. http://dx.doi.org/10.1071/RD11268

    Article  CAS  PubMed  Google Scholar 

  • Almiñana C, Caballero I, Heath PR, Maleki-Dizaji S, Parrilla I, Cuello C, Gil MA, Vazquez JL, Vazquez JM, Roca J, Martinez EA, Holt WV, Fazeli A (2014) The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics 15:293. doi:10.1186/1471-2164-15-293

  • Amanai M, Brahmajosyula M, Perry N (2006) A restricted role for sperm-borne microRNAs in mammalian fertilization. Biol Reprod 75(6):877–884. doi:10.1095/biolreprod.106.056499

    Article  CAS  PubMed  Google Scholar 

  • Anway MD, Memon MA, Uzumcu M, Skinner MK (2006) Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 27(6):868–879

    Article  CAS  PubMed  Google Scholar 

  • Armon L, Eisenbach M (2011) Behavioral mechanism during human sperm chemotaxis: involvement of hyperactivation. PLoS One 6(12):e28359. doi:10.1371/journal.pone.0028359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashizawa K, Nishiyama H (1983a) Effects of oviducal cells on the maintenance of motility and fertilizing capacity of fowl spermatozoa stored in a diffusion chamber. Poult Sci 62(11):2276–2279

    Article  CAS  PubMed  Google Scholar 

  • Ashizawa K, Nishiyama H (1983b) Prolonged survival of fowl spermatozoa in the oviducal tissues in organ culture. Br Poult Sci 24(1):27–32. doi:10.1080/00071668308416710

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG (2010) The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail 12(8):819–825. doi:10.1093/eurjhf/hfq069. hfq069 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  • Boilard M, Reyes-Moreno C, Sirard MA (2001) Binding of chaperonins to bovine spermatozoa by direct contact to apical plasma membrane of oviduct epithelial cells. Biol Reprod 64:112–112

    Google Scholar 

  • Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, Lavabre-Bertrand T, Commes T, Lemaitre JM, Boureux A, De Vos J (2016) Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update 23(1):19–40. doi:10.1093/humupd/dmw035

    Article  PubMed  Google Scholar 

  • Chiu PC, Liao S, Lam KK, Tang F, Ho JC, Ho PC, WS O, Yao YQ, Yeung WS (2010) Adrenomedullin regulates sperm motility and oviductal ciliary beat via cyclic adenosine 5′-monophosphate/protein kinase A and nitric oxide. Endocrinology 151(7):3336–3347. doi:10.1210/en.2010-0077

    Article  CAS  PubMed  Google Scholar 

  • Coy P, Avilés M (2010) What controls polyspermy in mammals, the oviduct or the oocyte? Biol Rev 85:593–605

    PubMed  Google Scholar 

  • Coy P, Canovas S, Mondejar I, Saavedra MD, Romar R, Grullon L, Matas C, Aviles M (2008a) Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc Natl Acad Sci U S A 105(41):15809–15814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coy P, Lloyd R, Romar R, Matas C, Adan AG, Holt WV (2008b) Bovine oviductal fluid affects quality and gene expression of in vitro derived porcine blastocysts. Reprod Domest Anim 43:66–66

    Article  Google Scholar 

  • Coy P, Yanagimachi R (2015) The common and species-specific roles of oviductal proteins in mammalian fertilization and embryo development. Bioscience 65(10):973–984. doi:10.1093/biosci/biv119

    Article  Google Scholar 

  • Das SK, Sharma AK, Mohapatra SK, Bhatia V, Chatterjee A, Mohanty AK (2013) Purification of cattle oviduct specific proteins and their effect on in vitro embryo development. Livest Sci 152(1):88–93. https://doi.org/10.1016/j.livsci.2012.12.002

    Article  Google Scholar 

  • Dobrinski I, Smith TT, Suarez SS, Ball BA (1997) Membrane contact with oviductal epithelium modulates the intracellular calcium concentration of equine spermatozoa in vitro. Biol Reprod 56(4):861–869

    Article  CAS  PubMed  Google Scholar 

  • Ellington JE, Ignotz GG, Ball BA, Meyers-Wallen VN, Currie WB (1993) De novo protein synthesis by bovine uterine tube (oviduct) epithelial cells changes during co-culture with bull spermatozoa. Biol Reprod 48(4):851–856

    Article  CAS  PubMed  Google Scholar 

  • Faure C, Dupont C, Chavatte-Palmer P, Gautier B, Levy R (2015) Are semen parameters related to birth weight? Fertil Steril 103(1):6–10. https://doi.org/10.1016/j.fertnstert.2014.11.027

    Article  PubMed  Google Scholar 

  • Fazeli A, Affara NA, Hubank M, Holt WV (2004) Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biol Reprod 71(1):60–65. doi:10.1095/biolreprod.103.026815

    Article  CAS  PubMed  Google Scholar 

  • Georgiou AS, Sostaric E, Wong CH, Snijders AP, Wright PC, Moore HD, Fazeli A (2005) Gametes alter the oviductal secretory proteome. Mol & cell proteomics : MCP 4(11):1785–1796. doi:10.1074/mcp.M500119-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Grippo AA, Henault MA, Anderson SH, Killian GJ (1992) Cation concentrations in fluid from the oviduct ampulla and isthmus of cows during the estrous-cycle. J Dairy Sci 75:58–65

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Bosagna C, Covert TR, Haque MM, Settles M, Nilsson EE, Anway MD (2012) Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod Toxicol 34(4):694–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho S-M, Cheong A, Adgent MA, Veevers J, Suen AA, Tam NNC, Leung Y-K, Jefferson WN, Williams CJ (2017) Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol 68:85–104. https://doi.org/10.1016/j.reprotox.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  • Holt WV (2009) Is semen analysis useful to predict the odds that the sperm will meet the egg? Reprod Domest Anim 44(Supplement 3):31–38

    Article  PubMed  Google Scholar 

  • Holt WV, Fazeli A (2016) Sperm selection in the female mammalian reproductive tract. Focus on the oviduct: hypotheses, mechanisms, and new opportunities. Theriogenology 85(1):105–112. doi:10.1016/j.theriogenology.2015.07.019

    Article  CAS  PubMed  Google Scholar 

  • Hribal R, Hachen A, Jewgenow K, Zahmel J, Fernandez-Gonzalez L, Braun BC (2014) The influence of recombinant feline oviductin on different aspects of domestic cat (Felis catus) IVF and embryo quality. Theriogenology 82(5):742–749. https://doi.org/10.1016/j.theriogenology.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  • Hunter RH (2012) Components of oviduct physiology in eutherian mammals. Biol Rev Camb Philos Soc 87(1):244–255. doi:10.1111/j.1469-185X.2011.00196.x

    Article  CAS  PubMed  Google Scholar 

  • Killian G (2011) Physiology and endocrinology symposium: evidence that oviduct secretions influence sperm function: a retrospective view for livestock. J Anim Sci 89(5):1315–1322. doi:10.2527/jas.2010-3349

    Article  CAS  PubMed  Google Scholar 

  • Lee H-S (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Forum Nutr 7(11):9492–9507. doi:10.3390/nu7115467

    CAS  Google Scholar 

  • Leese HJ, Hugentobler SA, Gray SM, Morris DG, Sturmey RG, Whitear SL, Sreenan JM (2008) Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod Fertil Dev 20(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jorgensen EH, Sonne C, Verreault J, Vijayan MM, Gabrielsen GW (2010) Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci Total Environ 408(15):2995–3043. doi:10.1016/j.scitotenv.2009.10.038

    Article  CAS  PubMed  Google Scholar 

  • Li HW, Liao SB, Chiu PC, Tam WW, Ho JC, Ng EH, Ho PC, Yeung WS, Tang F, WS O (2010) Expression of adrenomedullin in human oviduct, its regulation by the hormonal cycle and contact with spermatozoa, and its effect on ciliary beat frequency of the oviductal epithelium. J Clin Endocrinol Metab 95(9):E18–E25. doi:10.1210/jc.2010-0273

    Article  PubMed  Google Scholar 

  • Li S, Winuthayanon W (2017) Oviduct: roles in fertilization and early embryo development. J Endocrinol 232(1):R1–R26. doi:10.1530/JOE-16-0302

    Article  CAS  PubMed  Google Scholar 

  • Liao SB, Ho JC, Tang F, O WS (2011) Adrenomedullin increases ciliary beat frequency and decreases muscular contraction in the rat oviduct. Reproduction 141(3):367–372. doi:10.1530/REP-10-0230

    Article  CAS  PubMed  Google Scholar 

  • Liao SB, Li HW, Ho JC, Yeung WS, Ng EH, Cheung AN, Tang F, WS O (2012) Possible role of adrenomedullin in the pathogenesis of tubal ectopic pregnancy. J Clin Endocrinol Metab 97(6):2105–2112. doi:10.1210/jc.2011-3290

    Article  CAS  PubMed  Google Scholar 

  • Lignell S, Aune M, Darnerud PO, Hanberg A, Larsson SC, Glynn A (2013) Prenatal exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may influence birth weight among infants in a Swedish cohort with background exposure: a cross-sectional study. Environ Health 12:44. doi:10.1186/1476-069x-12-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Úbeda R, García-Vázquez FA, Romar R, Gadea J, Muñoz M, Hunter RHF, Coy P (2015) Oviductal transcriptome is modified after insemination during spontaneous ovulation in the sow. PLoS One 10(6):e0130128. doi:10.1371/journal.pone.0130128

    Article  PubMed  PubMed Central  Google Scholar 

  • Marczylo EL, Amoako AA, Konje JC, Gant TW, Marczylo TH (2012) Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 7(5):432. doi:10.4161/epi.19794

    Article  CAS  PubMed  Google Scholar 

  • Marin-Briggiler CI, Gonzalez-Echeverria MF, Munuce MJ, Ghersevich S, Caille AM, Hellman U, Corrigall VM, Vazquez-Levin MH (2010) Glucose-regulated protein 78 (Grp78/BiP) is secreted by human oviduct epithelial cells and the recombinant protein modulates sperm-zona pellucida binding. Fertil Steril 93(5):1574–1584. doi:10.1016/j.fertnstert.2008.12.132

    Article  CAS  PubMed  Google Scholar 

  • Martin JH, Bromfield EG, Aitken RJ, Nixon B (2017) Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 74(3):469–485. doi:10.1007/s00018-016-2356-1

    Article  CAS  PubMed  Google Scholar 

  • McCauley TC, Buhi WC, GM W, Mao J, Caamano JN, Didion BA, Day BN (2003) Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro. Biol Reprod 69(3):828–834

    Article  CAS  PubMed  Google Scholar 

  • McNutt TL, Oldsclarke P, Way AL, Suarez SS, Killian GJ (1994) Effect of follicular or oviductal fluids on movement characteristics of bovine sperm during capacitation in-vitro. J Androl 15(4):328–336

    CAS  PubMed  Google Scholar 

  • Miller D, Brinkworth M, Iles D (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139(2):287–301

    Article  CAS  PubMed  Google Scholar 

  • Miller D, Ostermeier GC (2006) Spermatozoal RNA: why is it there and what does it do? Gynecol Obstet Fertil 34(9):840–846

    Article  CAS  PubMed  Google Scholar 

  • Miller D, Ostermeier GC, Krawetz SA (2005) The controversy, potential and roles of spermatozoal RNA. Trends Mol Med 11(4):156–163

    Article  CAS  PubMed  Google Scholar 

  • Mishima Y, Giraldez AJ, Takeda Y, Fujiwara T, Sakamoto H, Schier AF, Inoue K (2006) Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr Biol 16(21):2135–2142. doi:10.1016/j.cub.2006.08.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munson L, Calzada N, Kennedy S, Sorensen TB (1998) Luteinized ovarian cysts in Mediterranean striped dolphins. J Wildl Dis 34(3):656–660

    Article  CAS  PubMed  Google Scholar 

  • Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA (2002) Spermatozoal RNA profiles of normal fertile men. Lancet 360(9335):772–777

    Article  CAS  PubMed  Google Scholar 

  • Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA (2004) Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429(6988):154

    Article  CAS  PubMed  Google Scholar 

  • Overstreet JW, Cooper GW (1975) Reduced sperm motility in the isthmus of the rabbit oviduct. Nature 258:718–719

    Article  CAS  PubMed  Google Scholar 

  • Pierce GJ, Santos MB, Murphy S, Learmonth JA, Zuur AF, Rogan E, Bustamante P, Caurant F, Lahaye V, Ridoux V, Zegers BN, Mets A, Addink M, Smeenk C, Jauniaux T, Law RJ, Dabin W, Lopez A, Farre JMA, Gonzalez AF, Guerra A, Garcia-Hartmann M, Reid RJ, Moffat CF, Lockyer C, Boon JP (2008) Bioaccumulation of persistent organic pollutants in female common dolphins (Delphinus delphis) and harbour porpoises (Phocoena phocoena) from western European seas: geographical trends, causal factors and effects on reproduction and mortality. Environ Pollut 153(2):401–415. doi:10.1016/j.envpol.2007.08.019

    Article  CAS  PubMed  Google Scholar 

  • Rivera RM, Ross JW (2013) Epigenetics in fertilization and preimplantation embryo development. Prog Biophys Mol Biol 113(3):423–432. doi:10.1016/j.pbiomolbio.2013.02.001

    Article  PubMed  Google Scholar 

  • Schier AF, Giraldez AJ (2006) MicroRNA function and mechanism: insights from zebra fish. Cold Spring Harb Symp Quant Biol 71:195–203. doi:10.1101/sqb.2006.71.055

    Article  CAS  PubMed  Google Scholar 

  • Seytanoglu A, Georgiou AS, Sostaric E, Watson PF, Holt WV, Fazeli A (2008) Oviductal cell proteome alterations during the reproductive cycle in pigs. J Proteome Res 7(7):2825–2833. doi:10.1021/pr8000095

    Article  CAS  PubMed  Google Scholar 

  • Smith TT, Nothnick WB (1997) Role of direct contact between spermatozoa and oviductal epithelial cells in maintaining rabbit sperm viability. Biol Reprod 56(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Sonne C (2010) Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environ Int 36(5):461–491. doi:10.1016/j.envint.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  • Sonne C, Leifsson PS, Dietz R, Born EW, Letcher RJ, Hyldstrup L, Riget FF, Kirkegaard M, Muir DCG (2006) Xenoendocrine pollutants may reduce size of sexual organs in East Greenland polar bears (Ursus maritimus). Environ Sci Technol 40(18):5668–5674. doi:10.1021/es060836n

    Article  CAS  PubMed  Google Scholar 

  • Sostaric E, Georgiou AS, Wong CH, Moore HD, Watson PF, Holt WV, Fazeli A (2005) Profiling porcine oviductal epithelial cell surface membrane proteins. In: Biology of Reproduction, pp 202–202. 1603 Monroe St, Madison, WI 53711-2021 USA: Soc Study Reproduction

    Google Scholar 

  • Soubry A (2015) Epigenetic inheritance and evolution: a paternal perspective on dietary influences. Prog Biophys Mol Biol 118(1–2):79–85. doi:10.1016/j.pbiomolbio.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  • Soubry A, Guo L, Huang Z, Hoyo C, Romanus S, Price T, Murphy SK (2016) Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin Epigenetics 8(1):51. doi:10.1186/s13148-016-0217-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Soubry A, Hoyo C, Jirtle RL, Murphy SK (2014) A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays 36(4):359. doi:10.1002/bies.201300113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephane EC, Robert AM (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14(2):100. doi:10.1038/nrg3355

    Article  Google Scholar 

  • Suarez SS, Dai XB, Demott RP, Redfern K, Mirando MA (1992) Movement characteristics of boar sperm obtained from the oviduct or hyperactivated in vitro. J Androl 13:75–80

    CAS  PubMed  Google Scholar 

  • Suarez SS, Osman RA (1987) Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. Biol Reprod 36(5):1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Suarez SS, Pacey AA (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12(1):23–37. doi:10.1093/humupd/dmi047

    Article  CAS  PubMed  Google Scholar 

  • Thomas PG, Ignotz GG, Ball BA, Brinsko SP, Currie WB (1995) Effect of coculture with stallion spermatozoa on de novo protein synthesis and secretion by equine oviduct epithelial cells. Am J Vet Res 56(12):1657–1662

    CAS  PubMed  Google Scholar 

  • Thornburg KL, Shannon J, Thuillier P, Turker MS (2010) In utero life and epigenetic predisposition for disease. Adv Genet 71:57–78. doi:10.1016/B978-0-12-380864-6.00003-1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vrijens K, Bollati V, Nawrot T (2015) MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ Health Perspect (Online) 123(5):399. doi:10.1289/ehp.1408459

    CAS  Google Scholar 

  • Wells JC, Pomeroy E, Walimbe SR et al (2016) The elevated susceptibility to diabetes in India: an evolutionary perspective. Front Public Health 4:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Wennemuth G, Carlson AE, Harper AJ, Babcock DF (2003) Bicarbonate actions on flagellar and Ca2+−channel responses: initial events in sperm activation. Development 130(7):1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zhao Y, Yang X, Kan F (2015) Recombinant hamster oviductin is biologically active and exerts positive effects on sperm functions and sperm-oocyte binding. PLoS One 10(4):e0123003. doi:10.1371/journal.pone.0123003

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeste M, Holt WV, Bonet S, Rodriguez-Gil JE, Lloyd RE (2014) Viable and morphologically normal boar spermatozoa alter the expression of heat-shock protein genes in oviductal epithelial cells during co-culture in vitro. Mol Reprod Dev 81(9):805–819. doi:10.1002/mrd.22350

    Article  CAS  PubMed  Google Scholar 

  • Yeste M, Holt WV, Briz M, Bonet S, Lloyd RE (2009a) Boar spermatozoa do not induce changes in heat shock protein gene expression without direct contact with oviductal epithelial cells. Reprod Domest Anim 44:132–132

    Article  Google Scholar 

  • Yeste M, Lloyd RE, Badia E, Briz M, Bonet S, Holt WV (2009b) Direct contact between boar spermatozoa and porcine oviductal epithelial cell (OEC) cultures is needed for optimal sperm survival in vitro. Anim Reprod Sci 113(1–4):263–278. doi:10.1016/j.anireprosci.2008.08.018

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32(4):189–197. doi:10.1016/j.tibs.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Yang X, Jia Z, Reid RL, Leclerc P, Kan FWK (2016) Recombinant human oviductin regulates protein tyrosine phosphorylation and acrosome reaction. Reproduction 152(5):561–573. doi:10.1530/REP-16-0177

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William V. Holt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fazeli, A., Holt, W.V. (2017). Introduction: A Brief Guide to the Periconception Environment. In: Fazeli, A., Holt, W. (eds) Periconception in Physiology and Medicine. Advances in Experimental Medicine and Biology, vol 1014. Springer, Cham. https://doi.org/10.1007/978-3-319-62414-3_1

Download citation

Publish with us

Policies and ethics