Skip to main content

Standard Propagation Model Tuning for Path Loss Predictions in Built-Up Environments

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

This paper provides a simple optimization procedure using ATOLL planning tool for Standard Propagation Model (SPM). Measurement campaigns were conducted to collect Received Signal Strength (RSS) data over commercial base stations operating at 1800 MHz. The prediction accuracy of widely used models were assessed. The models provided high prediction errors. The optimization procedure involves the use of Digital Terrain Model (DTM), clutter classes, clutter heights, vector maps, scanned images, and Web Map Service (WMS). A Logarithmic weighting function was used to calculate the weight of the clutter loss on each pixel from the pixel with the receiver in the direction of the transmitter, up to the defined maximum distance. The approach has proven promising by achieving high accuracy and minimizing the prediction errors by 47.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lempiäinen, J., Manninen, M.: Radio Interface System Planning for GSM/GPRS/UMTS. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  2. Laiho, J., Wacker, A., Novosad, T.: Radio Network Planning and Optimisation for UMTS. Wiley, New York (2002)

    Google Scholar 

  3. Rappaport, T.S.: Wireless Communications: Principles and Practice. Prentice Hall PTR, Upper Saddle River (2002)

    MATH  Google Scholar 

  4. Parsons, J.D.: The Mobile Radio Propagation Channel, 2nd edn. Wiley, New York (2000)

    Book  Google Scholar 

  5. Clark, R.H.: A Statistical Description of Mobile Radio Reception. BSTJ 47, 957–1000 (1968)

    Google Scholar 

  6. Mishra, A.J.: Advanced Cellular Networks Planning and Optimization 2G/2.5G/3G…Evolution to 4G, pp. 1–12. Wiley, New York (2007). ISBN 13 978-0-470-01471-4

    Google Scholar 

  7. Luebbers, R.J.: Propagation prediction for hilly terrain using GTD wedge diffraction. IEEE Trans. Antennas Propag. 32(9), 951–955 (1984)

    Article  Google Scholar 

  8. Mohtashami, V., Shishegar, A.A.: Modified wavefront decomposition method for fast and accurate ray-tracing simulation. Microw. Antennas Propag. IET 6(3), 295–304 (2012)

    Article  Google Scholar 

  9. Hufford, G.A.: An integral equation approach to the problem of wave propagation over an irregular surface. Q. J. Mech. Appl. Math. 9(4), 391–404 (1952)

    MathSciNet  MATH  Google Scholar 

  10. Zelley, C.A., Constantinou, C.C.: A three-dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain. IEEE Trans. Antennas Propag. 47(10), 1586–1596 (1999)

    Article  Google Scholar 

  11. Masahara, H.: Empirical formula for propagation loss in land-mobile radio services. IEEE Trans. Veh. Technol. 29(3), 317–325 (1980)

    Article  Google Scholar 

  12. COST 231 Project: Urban Transmission Loss Models for Mobile Radio in the 900 and 1800 MHz band, COST 231 TD (90) 119 Rev. 2, The Hague, Netherlands (1991)

    Google Scholar 

  13. Popoola, S.I., Oseni, O.F.: Performance evaluation of radio propagation models on GSM network in urban area of Lagos, Nigeria. Int. J. Sci. Eng. Res. 5(6), 1212–1217 (2014)

    Google Scholar 

  14. Popoola, S.I., Oseni, O.F.: Empirical path loss models for GSM network deployment in Makurdi, Nigeria. Int. Refereed J. Eng. Sci. 3(6), 85–94 (2014)

    Google Scholar 

  15. Oseni, O.F., Popoola, S.I., Abolade, R.O., Adegbola, O.A.: Comparative analysis of received signal strength prediction models for radio network planning of GSM 900 MHz in Ilorin, Nigeria. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 4(3), 45–50 (2014)

    Google Scholar 

  16. Faruk, N., Ayeni, A.A., Adediran, Y.A.: Error bounds of empirical path loss models at VHF/UHF bands in Kwara State, Nigeria. In: Proceedings of IEEE EUROCON Conference, Croatia, pp. 602–607 (2013)

    Google Scholar 

  17. Faruk, N., Adediran, Y.A., Ayeni, A.A.: On the study of empirical path loss models for accurate prediction of TV signal for secondary users. Prog. Electromagn. Res. (PIER) B USA 49, 155–176 (2013)

    Article  Google Scholar 

  18. Rath, H.K., Verma, S., Simha, A., Karandikar, A.: Path loss model for Indian terrain - empirical approach. In: 2016 Twenty Second National Conference on Communication (NCC), Guwahati, pp. 1–6 (2016)

    Google Scholar 

  19. Al Salameh, M.S.H., Al-Zu’bi, M.M.: Prediction of radio wave propagation for wireless cellular networks in Jordan. In: 2015 7th International Conference on Knowledge and Smart Technology (KST), Chonburi, pp. 149–154 (2015)

    Google Scholar 

  20. Nimavat, V.D., Kulkarni, G.R.: Simulation and performance evaluation of GSM propagation channel under the urban, suburban and rural environments. In: 2012 International Conference on Communication, Information and Computing Technology (ICCICT), Mumbai, pp. 1–5 (2012)

    Google Scholar 

  21. Ibhaze, A.E., Ajose, S.O., Atayero, A.A.A., Idachaba, F.E.: Developing smart cities through optimal wireless mobile network. In: 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech), Balaclava, pp. 118–123 (2016)

    Google Scholar 

  22. Ibhaze, A.E., Imoize, A.L., Ajose, S.O., John, S.N., Ndujiuba, C.U., Idachaba, F.E.: An empirical propagation model for path loss prediction at 2100 MHz in a dense urban environment. Indian J. Sci. Technol. 8(1) (2017)

    Google Scholar 

  23. Abhayawardhana, V.S., Wassell, I.J., Crosbsy, D., Sellars, M.P., Brown, M.G.: Comparison of empirical propagation path loss models for fixed wireless access systems. In: IEEE Vehicular Technology Conference, Spring, vol. 1, pp. 73–77 (2005)

    Google Scholar 

  24. TEMS: Testing, Monitoring, and Analytics Software, Ashburn, VA, USA. www.tems.com

  25. Pitney Bowes: MapInfo Pro. http://www.pitneybowes.com/us/location-intelligence/geographic-information-systems/mapinfo-pro.html

  26. Forsk: ATOLL 3.2.0 Radio Planning and Optimization Software, France. www.forsk.com

Download references

Acknowledgment

The authors wish to appreciate the Center for Research, Innovation, and Discovery (CU-CRID) of Covenant University, Ota, Nigeria for partly funding of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Segun I. Popoola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Popoola, S.I., Atayero, A.A., Faruk, N., Calafate, C.T., Olawoyin, L.A., Matthews, V.O. (2017). Standard Propagation Model Tuning for Path Loss Predictions in Built-Up Environments. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10409. Springer, Cham. https://doi.org/10.1007/978-3-319-62407-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62407-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62406-8

  • Online ISBN: 978-3-319-62407-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics