Advertisement

Soil Erosion Modelling on Arable Lands and Soil Types in Basilicata, Southern Italy

  • Dimotta Antonella
  • Lazzari MaurizioEmail author
  • Cozzi Mario
  • Romano Severino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10408)

Abstract

Evaluating the impact and the incidence of the erosive phenomenon affecting the Basilicata region in 2012 - in particular, the agricultural areas used for the arable lands cultivation -, is an important goal aimed at correlating the erosion process – evaluated through the USPED method application (2012) - with the main characteristics related to soil and the areas interested, such as: soil types, with particular attention to two physical-chemical characteristics, such as: total CaCO3 (%) and soil organic matter content (SOM, %) -, land uses and the spatial distribution of arable lands at municipal scale. The correlation is intended to give an overview of geological and agricultural of amount of the areas affected by this phenomenon, since it aims to analyze and evaluate the agrarian framework in relation to the state of erosion in 2012 by assessing the incidence of the erosion process at regional and municipal scale in relation to the different scenarios deriving from the land use and soil types and choosing the most efficient land management strategy in terms of potential policies to communicate to the final decision makers.

Keywords

Soil erosion USPED method Soil types Land use Arable lands Basilicata Southern Italy Land use policy 

References

  1. 1.
    Morgan, R.P.C.: Soil erosion and conservation, 3rd edn. Blackwell Publishing, National Soil Resources Institute, Cranfield (2006)Google Scholar
  2. 2.
    Boardman, J., Poesen, J.: Soil erosion in Europe: major processes, causes and consequences. In: Boardman, J., Poesen, J. (eds.). Soil Erosion in Europe, pp. 479–488 (2006). http://dx.doi.org/10.1002/0470859202.ch36
  3. 3.
    Bechmann, M.: Effect of tillage on sediment and phosphorus losses from a field and a catchment in south eastern Norway. Acta Agriculturae Scandinavica, Section B: Soil Plant Sci. Soil Eros. Nordic Countries (spec. iss.), 62(2), 206–216 (2012)Google Scholar
  4. 4.
    Csepinszky, B., Jakab, G.: Pannon R-02 Esőszimulator a Talajerozio Vizsgalatara. XLI. Georgikon Napok, Keszthely, pp. 294–298 (1999)Google Scholar
  5. 5.
    Dabney, S.M., Delgado, J.A., Reeves, D.W.: Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal. 32(7), 1221–1250 (2001). doi: 10.1081/CSS-100104110 CrossRefGoogle Scholar
  6. 6.
    Kertész, Á., Tóth, A., Jakab, G., Szalai, Z.: Soil erosion measurements in the Tetves Catchment, Hungary. In: Helming, K. (ed.) Multidisciplinary Approaches to Soil Conservation Strategies. Proceedings, International Symposium, ESSC, DBG, ZALF, Müncheberg, Germany, 11–13 May 2001. ZALF-BERICHT Nr. 47, pp. 47–52 (2001)Google Scholar
  7. 7.
    Pardini, G., Gispert, M., Dunjò, G.: Runoff erosion and nutrient depletion in five Mediterranean soils of NE Spain under different land use. Sci. Total Environ 309, 213–224 (2003)CrossRefGoogle Scholar
  8. 8.
    Nearing, M.A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M.H., Nunes, J.P., Renschler, C.S., Souchere, V., van Oost, K.: Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 61(2–3), 131–154 (2005)CrossRefGoogle Scholar
  9. 9.
    García-Ruiz, J.M.: The effects of land uses on soil erosion in Spain: a review. CATENA 81, 1–11 (2010)CrossRefGoogle Scholar
  10. 10.
    Jakab, G., Centeri, C., Kiss, K., Madarász, B., Szalai, Z.: Erózió és művelés okozta anyagvándorlás szántóföldön. In: Dobos Endre, Bertóti Réka Diana, Szabóné Kele Gabriella (szerk.): Talajtan a mezőgazdaság, a vidékfejlesztés és a környezetgazdálkodás szolgálatában. Talajvédelem (különszám), Budapest, Talajvédelmi Alapítvány; Magyar Talajtani Társaság, pp. 283–292 (2013)Google Scholar
  11. 11.
    Madarász B – Kertész Á.: A gyepes sávok szerepe a talaj, víz és természetvédelemben. In: Zákányi Balázs, Faur Krisztina Beáta (szerk.) IX. Kárpát-medencei környezettudományi konferencia: Konferencia kiadvány. Miskolc, Magyarország, 2013.06.13–2013.06.15. Miskolci Egyetem Műszaki Földtudományi Kar, pp. 24–29 (2013)Google Scholar
  12. 12.
    Madarász, B., Bádonyi, K., Csepinszky, B., Mika, J., Kertész, Á.: Conservation tillage forrational water management and soil conservation. Hung. Geograph. Bull. 60(2), 117–133 (2011)Google Scholar
  13. 13.
    Madarász, B., Csepinszky, B., Benke, S.: Gyepes sávok szerepe a talajerózió elleni védekezésben. In: Jakab, G., Szalai, Z., (szerk.) Talajpusztulás térben és időben: az “Eróziós kerekasztal 2013” közleményei. Budapest, Magyarország, 2013.12.12., MTA CSFK Földrajztudományi Intézet, pp. 32–39 (2014)Google Scholar
  14. 14.
    Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Nonita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T.: Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122(1–2), 167–177 (2010). doi: 10.1016/j.geomorph.2010.06.011 CrossRefGoogle Scholar
  15. 15.
    Kinderiene, I., Karcauskiene, D.: Effects of different crop rotations on soil erosion and nutrient losses under natural rainfall conditions in Western Lithuania. Acta Agriculturae Scandinavica, Section B: Soil Plant Sci. 62(2), 199–205 (2012)CrossRefGoogle Scholar
  16. 16.
    Dimotta, A., Cozzi, M., Romano, S., Lazzari, M.: Soil Loss, productivity and cropland values gis-based analysis and trends in the Basilicata region (Southern Italy) from 1980 to 2013. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9789, pp. 29–45. Springer, Cham (2016). doi: 10.1007/978-3-319-42089-9_3 CrossRefGoogle Scholar
  17. 17.
    Bakker, M.M., Govers, G., Rounsevell, M.D.A.: The crop productivity-erosion relationship: an analysis based on experimental work. CATENA 57(1), 55–76 (2004)CrossRefGoogle Scholar
  18. 18.
    Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A.: Soil Processes and the Carbon Cycle, p. 609. CRC Press, Boca Raton (1998)Google Scholar
  19. 19.
    Maintenance of soil organic matter. Guidelines. www.agriculture.gov.ie
  20. 20.
    Jenny, H.: Factors of Soil Formation. McGraw-Hill, New York (1941)Google Scholar
  21. 21.
    Rasmussen, P.E., Collins, H.P.: Long-term impacts of tillage, fertilizer, and crop residue on soil organic matter in temperate semiarid regions. Adv. Agron. 45, 93–134 (1991)CrossRefGoogle Scholar
  22. 22.
    van der Keur, P., Iversen, B.V.: Uncertainty in soil physical data at river basin scale – a review. Hydrol. Earth Syst. Sci. 10, 889–902 (2006)CrossRefGoogle Scholar
  23. 23.
    Plunkett, M., Castle, J.: Soil Organic Matter and Nutrients Analysis. Agriculture and Food Development Authority. Teagasc (2010)Google Scholar
  24. 24.
    Hassan, K.F., Agha, M.D.: Effects of calcium carbonate on the erodibility of some calcareous soils by water erosion. Mesoptamia J. Agri. 40(4) (2012)Google Scholar
  25. 25.
    Guimaraes, D.V., Gonzaga, M.I.S., da Silva, T.O., da Silva, T.L., da Silva, D.N., Matias, M.I.S.: Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 126, 177–182 (2013)CrossRefGoogle Scholar
  26. 26.
    Lal, R.: Soil quality and sustainability. Methods for assessment of soil degradation (1997)Google Scholar
  27. 27.
    Lal, R., Mokma, D., Lowery, B.: Relation between soil quality and erosion. In: Rattan, L. (ed.) Soil Erosion and Productivity. Section IV. Handbook: Soil Quality and Soil Erosion. Soil and Water Conservation Society. Ankeny, Iowa. CRC Press, NY (1999)Google Scholar
  28. 28.
    Jankauskas, B., Jankauskiene, G., Fullen, A.M.: Relationships between soil organic matter content and soil erosion severity in Albeluvisols of the Zemiciai Uplands. Ekologija 53(1), 21–28 (2007)Google Scholar
  29. 29.
    Arriaga, F.: Soil physical properties and crop productivity of an eroded soil amended with cattle manure. Soil Sci. 168(12), 888–899 (2003)CrossRefGoogle Scholar
  30. 30.
    Boyle, M.: Erosion’s contribution to greenhouse gases. Erosion Control. Features. January/February, pp. 21–29 (2002)Google Scholar
  31. 31.
    Fullen, M.A., Catt, J.: Soil Management: problems and solutions, p. 269. Arnold, London (2004)Google Scholar
  32. 32.
    Feiza, V., Feizienė, D., Jankauskas, B., Jankauskienė, G.: The impact of soil management on surface runoff, soil organic matter content and soil hydrological properties on the undulating landscape of Western Lithuania. Zemdirbyste-Agric. 95(1), 3–21 (2008)Google Scholar
  33. 33.
    Morgan, R.P.C.: Vegetative-based technologies for erosion control, in eco- and ground bio-engineering: the use of vegetation to improve slope stability. Dev. Plant Soil Sci. 103, 265–272 (2007). doi: 10.1007/978-1-4020-5593-5_26 Google Scholar
  34. 34.
    Račinskas, A.: Soil erosion, p. 136. Vilnius, Lithuania (1990)Google Scholar
  35. 35.
    Zuazo, V.H.D., Pleguezuelo, C.R.R.: Soil erosion and runoff prevention by plant covers. a review. Agron. Sustain. Develop. 28(1), 65–86 (2008). doi: 10.1051/agro:2007062 CrossRefGoogle Scholar
  36. 36.
    Szabò, B., Centeri, C., Szalai, Z., Jakab, G., Szabò, J.: Comparison of soil erosion dynamics under extensive and intensive cultivation based on soil parameters. In: 14th Alps – Adria Scientific Workshop, Neum, Bosnia and Herzegovina (2015)Google Scholar
  37. 37.
    Holling, C.S., Engineering resilience vs. ecological resilience. In: Schulze, P. (ed.) Engineering within Ecological Constraints, pp. 31–44. National Academy, USA (1996)Google Scholar
  38. 38.
    Wuang, S.-H., Huang, S.L., Budd, W.W.: Resilience analysis of the interaction of between typhoons and land use change. Landscape Urban Plann. 106, 303–315 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dimotta Antonella
    • 1
    • 2
  • Lazzari Maurizio
    • 2
    Email author
  • Cozzi Mario
    • 1
  • Romano Severino
    • 1
  1. 1.SAFE - School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenzaItaly
  2. 2.CNR IBAMTito ScaloItaly

Personalised recommendations