Acceleration of Computing and Visualization Processes with OpenCL for Standing Sea Wave Simulation Model

  • Andrei IvashchenkoEmail author
  • Alexey Belezeko
  • Ivan Gankevich
  • Vladimir Korkhov
  • Nataliia Kulabukhova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10408)


In this paper we highlight one of the possible acceleration approaches for the standing wave model simulation model with the use of OpenCL framework for GPGPU computations. We provide a description of the wave’s mathematical model, an explanation for the technology selection, as well as the identification of the algorithm part that can be accelerated. The text also contains a description of solution’s performance evaluation stage being compared with CPU-only program. The influence of OpenCL usage for improvements in rendering process is also shown here. Finally, possible ways of application improvement and further development are also considered.


Computing Mathematical modelling OpenCL OpenGL Autoregressive process Moving average process Velocity potential field Visualisation Real-time simulation 



Research was supported by grants of Russian Foundation for Basic Research (projects no. 16-07-01111, 16-07-00886, 16-07-01113).


  1. 1.
    Board, O.A.R.: OpenGL Reference Manual: The Official Reference Document for OpenGL, Release 1 (OTL). Addison-Wesley (C) (1993)Google Scholar
  2. 2.
    Bogdanova, A., Ivashchenko, A., Belezeko, A.: Creating distributed rendering applications. In: CEUR Workshop Proceedings, vol. 1787, pp. 130–134 (2016).
  3. 3.
    Bradsky, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)Google Scholar
  4. 4.
    Bucur, A.: OpenCL - OpenGL ES interop: processing live video streams on a mobile device - case study. In: ACM SIGGRAPH 2013 Mobile, SIGGRAPH 2013, NY, USA, p. 15 (2013).
  5. 5.
    clFFT developers: clFFT: OpenCL Fast Fourier Transforms (FFTs).
  6. 6.
    Degtyarev, A., Reed, A.: Modelling of incident waves near the ship’s hull (application of autoregressive approach in problems of simulation of rough seas). In: Proceedings of the 12th International Ship Stability Workshop (2011)Google Scholar
  7. 7.
    Degtyarev, A.B., Reed, A.M.: Synoptic and short-term modeling of ocean waves. Int. Shipbuilding Prog. 60(1–4), 523–553 (2013)Google Scholar
  8. 8.
    Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F., Ulerich, R.: GNU Scientific Library Reference Manual, 3rd edn. Network Theory Ltd. (2009). Gough, B. (ed.)Google Scholar
  9. 9.
    Geer, D.: Vendors upgrade their physics processing to improve gaming. Computer 39(8), 22–24 (2006)CrossRefGoogle Scholar
  10. 10.
    Khronos Group: OpenCL API reference (2013)Google Scholar
  11. 11.
    Kochin, N., Kibel, I., Roze, N.: Theoretical hydrodynamics. FizMatLit (1966) (in Russian)Google Scholar
  12. 12.
    Liao, W.S., Hsieh, T.J., Chang, Y.L.: Gpu parallel computing of spherical panorama video stitching. In: 2012 IEEE 18th International Conference on Parallel and Distributed Systems, pp. 890–895, December 2012Google Scholar
  13. 13.
    Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel rendering. IEEE Comput. Graph. Appl. 14(4), 23–32 (1994)CrossRefGoogle Scholar
  14. 14.
    Ukidave, Y., Gong, X., Kaeli, D.: Performance evaluation and optimization mechanisms for inter-operable graphics and computation on GPUS. In: Proceedings of Workshop on General Purpose Processing Using GPUs, GPGPU-7, NY, USA, pp. 37–45 (2014).
  15. 15.
    Unity Technologies: Unity - Manual: Compute Shaders.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andrei Ivashchenko
    • 1
    Email author
  • Alexey Belezeko
    • 1
  • Ivan Gankevich
    • 1
  • Vladimir Korkhov
    • 1
  • Nataliia Kulabukhova
    • 1
  1. 1.Department of Computer Modeling and Multiprocessor SystemsSaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations