Advertisement

Screens for Displaying Chirality Changing Mechanisms of a Series of Peroxides and Persulfides from Conformational Structures Computed by Quantum Chemistry

  • Vincenzo Aquilanti
  • Concetta Caglioti
  • Andrea Lombardi
  • Glauciete S. Maciel
  • Federico PalazzettiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10408)

Abstract

A great variety of data on molecular structure and changes, accumulated both experimentally and theoretically, need be compacted and classified to extract the information arguably relevant to understand the basic mechanisms of chemical transformations. Here a screen for displaying four-center processes is developed and as an illustration applied to conformations involving torsions around O – O and S – S bonds, extending the structural properties previously calculated in this laboratory. The construction of the screen follows from connections recently established between the classical kinematic mechanism – the four-bar linkage – and the basic ingredient of quantum angular momentum theory – the 6j symbol.

Keywords

Four-center processes Four-bar linkage Quantum angular momentum theory 

Notes

Acknowledgements

The authors acknowledge the Italian Ministry for Education, University and Research, MIUR for financial support through SIR 2014 Scientific Independence for Young Researchers (RBSI14U3VF).

References

  1. 1.
    Maciel, G.S., Bitencourt, A.C.P., Ragni, M., Aquilanti, V.: Alkyl peroxides: effect of substituent groups on the torsional mode around the O – O bond. Int. J. Quant. Chem. 107, 2697–2707 (2007)CrossRefGoogle Scholar
  2. 2.
    Maciel, G.S., Bitencourt, A.C.P., Ragni, M., Aquilanti, V.: Quantum study of peroxidic bonds and torsional levels for ROOR’ molecules (R, R’ = H, F, Cl, NO, CN). J. Phys. Chem. A 111, 12604–12610 (2007)CrossRefGoogle Scholar
  3. 3.
    Aquilanti, V., Ragni, M., Bitencourt, A.C.P., Maciel, G.S., Prudente, F.V.: Intramolecular dynamics of RS – SR’ systems (R, R’ = H, F, Cl, CH3, C2H5): torsional potentials, energy levels, partition functions. J. Phys. Chem. A 113, 3804–3813 (2009)CrossRefGoogle Scholar
  4. 4.
    Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: The origin of chiral discrimination: supersonic molecular beam experiments and molecular dynamics simulations of collisional mechanisms. Phys. Scr. 78, 058119 (2008)CrossRefGoogle Scholar
  5. 5.
    Barreto, P.R.P., Vilela, A.F.A., Lombardi, A., Maciel, G.S., Palazzetti, F., Aquilanti, V.: The hydrogen peroxide-rare gas systems: Quantum chemical calculations and hyperspherical harmonic representation of the potential energy surface for atom-floppy molecule interactions. J. Phys. Chem. A 111, 12754–17762 (2008)CrossRefGoogle Scholar
  6. 6.
    Barreto, P.R.P., Palazzetti, F., Grossi, G., Lombardi, A., Maciel, G.S., Vilela, A.F.A.: Range and strength of intermolecular forces for van der waals complexes of the type H2Xn-Rg, with X = O, S and n = 1, 2. Int. J. Quant. Chem. 110, 777–786 (2010)CrossRefGoogle Scholar
  7. 7.
    Barreto, P.R.P., Albernaz, A.F., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, V.: Hyperspherical representation of potential energy surfaces: intermolecular interactions in tetra-atomic and penta-atomic systems. Phys. Scr. 84, 028111 (2011)CrossRefGoogle Scholar
  8. 8.
    Maciel, G.S., Barreto, P.R.P., Palazzetti, F., Lombardi, A., Aquilanti, V.: A quantum chemical study of H2S2: Intramolecular torsional mode and intermolecular interactions with rare gases. J. Chem. Phys. 129, 164302 (2008)CrossRefGoogle Scholar
  9. 9.
    Barreto, P.R.P., Albernaz, A.F., Palazzetti, F.: Potential energy surfaces for van der Waals complexes of rare gases with H2S and H2S2: Extension to xenon interactions and hyperspherical harmonics representation. Int. J. Quant. Chem. 112, 834–847 (2012)CrossRefGoogle Scholar
  10. 10.
    Lombardi, A., Palazzetti, F., MacIel, G.S., Aquilanti, V., Sevryuk, M.B.: Simulation of oriented collision dynamics of simple chiral molecules. Int. J. Quant. Chem. 111, 1651–1658 (2011)CrossRefGoogle Scholar
  11. 11.
    Maciel, G.S., Bitencourt, A.C.P., Ragni, M., Aquilanti, V.: Studies of the dynamics around the O – O bond: orthogonal mods of hydrogen peroxide. Chem. Phys. Lett. 432, 383–390 (2006)CrossRefGoogle Scholar
  12. 12.
    Palazzetti, F., Munusamy, E., Lombardi, A., Grossi, G., Aquilanti, V.: Spherical and hyperspherical representation of potential energy surfaces for intermolecular interactions. Int. J. Quant. Chem. 111, 318–332 (2011)CrossRefGoogle Scholar
  13. 13.
    Moss, G. P.: Pure Appl. Chem. 68, 2193–2222 (1996)Google Scholar
  14. 14.
    Bitencourt, A.C.P., Ragni, M., Littlejohn, R.G., Anderson, R., Aquilanti, V.: The Screen Representation of Vector Coupling Coefficients or Wigner 3j Symbols: Exact Computation and Illustration of the Asymptotic Behavior. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, Maria Irene, Taniar, D., Apduhan, B.O., Gervasi, Osvaldo (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 468–481. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_32 Google Scholar
  15. 15.
    Aquilanti, V., Bitencourt, A., da S. Ferreira, C., Marzuoli, A., Ragni, M.: Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity. PhysicaScripta 78, 058103 (2008)zbMATHGoogle Scholar
  16. 16.
    Aquilanti, V., Bitencourt, A., da S. Ferreira, C., Marzuoli, A., Ragni, M.: Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications. Theor. Chem. Acc. 123, 237 (2009)CrossRefGoogle Scholar
  17. 17.
    Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Bloch, F. et al (eds.) Spectroscopic and Group Theoretical Methods in Physics, pp. 1–58. North Holland, Amsterdam (1968)Google Scholar
  18. 18.
    Neville, D.: A technique for solving recurrence relations approximately and its application to the 3 j and 6 j symbols. J. Math. Phys. 12, 2438 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Schulten, K., Gordon, R.: Semiclassical approximations to 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta. J. Math. Phys. 16, 1971–1988 (1975)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schulten, K., Gordon, R.: Exact recursive evaluation of 3j- and 6j-coecients for quantum mechanical coupling of angular momenta. J. Math. Phys. 16, 1961–1970 (1975)CrossRefGoogle Scholar
  21. 21.
    Ragni, M., Bitencourt, A.C., Aquilanti, V., Anderson, R.W., Littlejohn, R.G.: Exact computation and asymptotic approximations of 6j symbols: Illustration of their semiclassical limits. Int. J. Quantum Chem. 110(3), 731–742 (2010)CrossRefGoogle Scholar
  22. 22.
    Aquilanti, V., Cavalli, S., Coletti, C.: Angular and hyperangular momentum recoupling, harmonic superposition and Racah polynomials. A recursive algorithm. Chem. Phys. Lett. 344, 587–600 (2001)CrossRefGoogle Scholar
  23. 23.
    Littlejohn, R.G., Yu, L.: Uniform semiclassical approximation for the Wigner 6j-symbol in terms of rotation matrices. J. Phys. Chem. A 113, 14904–14922 (2009)CrossRefGoogle Scholar
  24. 24.
    Aquilanti, V., Haggard, H.M., Hedeman, A., Jeevangee, N., Littlejohn, R., Yu, L.: Semiclassical mechanics of the Wigner 6j-symbol. J. Phys. A 45, 065209 (2012). arXiv:1009.2811v2MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Aquilanti, V., Capecchi, G.: Harmonic analysis and discrete polynomials. From semiclassical angular momentum theory to the hyperquantization algorithm. Theor. Chem. Accounts 104, 183–188 (2000)CrossRefGoogle Scholar
  26. 26.
    De Fazio, D., Cavalli, S., Aquilanti, V.: Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics. the hyperquantization algorithm. Int. J. Quantum Chem. 93, 91–111 (2003)CrossRefGoogle Scholar
  27. 27.
    Aquilanti, V., Cavalli, S., De Fazio, D.: Angular and hyperangular momentum coupling coecients as Hahn polynomials. J. Phys. Chem. 99(42), 15694–15698 (1995)CrossRefGoogle Scholar
  28. 28.
    Koekoek, R., Lesky, P., Swarttouw, R.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  29. 29.
    Bitencourt, A.C.P., Marzuoli, A., Ragni, M., Anderson, R.W., Aquilanti, V.: Exact and asymptotic computations of elementary spin networks: classification of the quantum–classical boundaries. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 723–737. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31125-3_54 CrossRefGoogle Scholar
  30. 30.
    Varshalovich, D., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)CrossRefGoogle Scholar
  31. 31.
    Aquilanti, V., Haggard, H.M., Littlejohn, R.G., Yu, L.: Semiclassical analysis of Wigner 3 j -symbol. J. Phys. A 40(21), 5637–5674 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Anderson, R.W., Aquilanti, V.: The discrete representation correspondence between quantum and classical spatial distributions of angular momentum vectors. J. Chem. Phys. 124, 214104 (2006). (9 pages)CrossRefGoogle Scholar
  33. 33.
    Anderson, R.W., Aquilanti, V., da Silva Ferreira, C.: Exact computation and large angular momentum asymptotics of 3nj symbols: semiclassical disentangling of spin networks. J. Chem. Phys. 129, 161101–161105 (2008)CrossRefGoogle Scholar
  34. 34.
    Anderson, R.W., Aquilanti, V., Bitencourt, A.C.P., Marinelli, D., Ragni, M.: The Screen Representation of Spin Networks: 2D Recurrence, Eigenvalue Equation for 6j Symbols, Geometric Interpretation and Hamiltonian Dynamics. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 46–59. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39643-4_4 CrossRefGoogle Scholar
  35. 35.
    Aquilanti, V., Marinelli, D., Marzuoli, A.: Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials. J. Phys. A: Math. Theor. 46, 175303 (2013). arXiv:1301.1949v2MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Arruda, M.S., Santos, R.F., Marinelli, D., Aquilanti, V.: Spin-coupling diagrams and incidence geometry: a note on combinatorial and quantum-computational aspects. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 431–442. Springer, Cham (2016). doi: 10.1007/978-3-319-42085-1_33 CrossRefGoogle Scholar
  37. 37.
    Ragni, M., Littlejohn, R.G., Bitencourt, A.C.P., Aquilanti, V., Anderson, R.W.: The screen representation of spin networks: images of 6j symbols and semiclassical features. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 60–72. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39643-4_5 CrossRefGoogle Scholar
  38. 38.
    Lombardi, A., Palazzetti, F., Aquilanti, V., Pirani, F., Casavecchia, P.: The astrochemical observatory: experimental and computational focus on the chiral molecule propylene oxide as a case study. In: ICCSA 2017, Part V, LNCS, vol. 10408, pp. 1-14. doi: 10.1007/978-3-319-62404-4_20
  39. 39.
    Aquilanti, V., Anderson, R. W.: Spherical and hyperbolic spin network: the q-extensions of wigner racah 6j coefficients and general orthogonal discrete basis sets in applied quantum mechanics. In: ICCSA 2017, Part V, LNCS, vol. 10408, pp. 1-16. doi: 10.1007/978-3-319-62404-4_25

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vincenzo Aquilanti
    • 1
    • 2
    • 3
  • Concetta Caglioti
    • 1
  • Andrea Lombardi
    • 1
  • Glauciete S. Maciel
    • 1
    • 4
  • Federico Palazzetti
    • 1
    Email author
  1. 1.Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaPerugiaItaly
  2. 2.Istituto di Struttura della MateriaConsiglio Nazionale delle RicercheRomeItaly
  3. 3.Instituto de FísicaUniversidade Federal da BahiaSalvadorBrazil
  4. 4.Secretaria de Estado da Educação do Distrito FederalBrasiliaBrazil

Personalised recommendations