Advertisement

Spherical and Hyperbolic Spin Networks: The q-extensions of Wigner-Racah 6j Coefficients and General Orthogonal Discrete Basis Sets in Applied Quantum Mechanics

  • Roger W. AndersonEmail author
  • Vincenzo Aquilanti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10408)

Abstract

Discrete basis sets continue to have an important role in mathematics and quantum mechanics. Racah recoupling coefficients or their closely related Wigner 6j symbols form a remarkably rich source of such functions, and now their properties are well understood for Euclidean space where \(q = 1\). Here we report a unified treatment of their q-extensions to non-Euclidean spaces: hyperbolic, for real q different from 1, and spherical, for \(q = r^{th}\) root of unity. We calculate the non-Euclidean coefficients as the eigenvectors of a real symmetric tridiagonal matrix. The eigenvectors form a discrete ortho-normal basis set, and the eigenvalues can be interpreted as energy levels. We provide extensive numerical results, and also show the Neville volume formula for a tetrahedron appears to be valid for both hyperbolic and spherical cases in the semiclassical limit. This q-extended volume is used to scale the magnitude of the eigenvectors in a familiar fashion. We also determine for spherical space that the radius, r, has a sharp minimum value to support all x,y given by triangular relations for a quadrilateral (not necessarily planar) with side lengths abcd and forming a tetrahedron. The ranges of x and y are truncated for \(r < a+b+c+d+2\).

References

  1. 1.
    Varshalovich, D., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)CrossRefGoogle Scholar
  2. 2.
    Aquilanti, V., Coletti, C.: \(3nj\) symbols and harmonic superposition coefficients: an icosahedral abacus. Chem. Phys. Lett. 344, 601–611 (2001)CrossRefGoogle Scholar
  3. 3.
    Anderson, R.W., Aquilanti, V., Marzuoli, A.: 3nj morphogenesis and semiclassical disentangling. J. Phys. Chem. A 113, 15106–15117 (2009)CrossRefGoogle Scholar
  4. 4.
    Aquilanti, V., Cavalli, S., Coletti, C.: Angular and hyperangular momentum recoupling, harmonic superposition and Racah polynomials. A recursive algorithm. Chem. Phys. Lett. 344, 587–600 (2001)CrossRefGoogle Scholar
  5. 5.
    Aquilanti, V., Haggard, H.M., Littlejohn, R., Yu, L.: Semiclassical analysis of Wigner \(3j\)-symbol. J. Phys. A 40, 5637–5674 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bitencourt, A.C.P., Ragni, M., Littlejohn, R.G., Anderson, R., Aquilanti, V.: The screen representation of vector coupling coefficients or wigner 3j symbols: exact computation and illustration of the asymptotic behavior. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 468–481. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_32 Google Scholar
  7. 7.
    Littlejohn, R., Yu, L.: Uniform semiclassical approximation for the Wigner \(6j\) symbol in terms of rotation matrices. J. Phys. Chem. A 113, 14904–14922 (2009)CrossRefGoogle Scholar
  8. 8.
    Koekoek, R., Lesky, P., Swarttouw, R.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polyomials of a Discrete Variable. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  10. 10.
    Aquilanti, V., Cavalli, S., De Fazio, D.: Angular and hyperangular momentum coupling coefficients as Hahn polynomials. J. Phys. Chem. 99, 15694–15698 (1995)CrossRefGoogle Scholar
  11. 11.
    Aquilanti, V., Capecchi, G.: Harmonic analysis and discrete polynomials. From semiclassical angular momentum theory to the hyperquantization algorithm. Theor. Chem. Accounts 104, 183–188 (2000)CrossRefGoogle Scholar
  12. 12.
    De Fazio, D., Cavalli, S., Aquilanti, V.: Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics. The hyperquantization algorithm. Int. J. Quant. Chem. 93, 91–111 (2003)CrossRefGoogle Scholar
  13. 13.
    Calderini, D., Cavalli, S., Coletti, C., Grossi, G., Aquilanti, V.: Hydrogenoid orbitals revisited: From Slater orbitals to Coulomb Sturmians. J. Chem. Sci. 124, 187–192 (2012)CrossRefGoogle Scholar
  14. 14.
    Coletti, C., Calderini, D., Aquilanti, V.: d-dimensional Kepler-Coulomb Sturmians andHyperspherical Harmonics as Complete Orthonormal Atomic and Molecular Orbitals. Adv. Quantum Chem. 67, 73–127 (2013)CrossRefGoogle Scholar
  15. 15.
    Aquilanti, V., Cavalli, S., Coletti, C., De Fazio, D., Grossi, G.: Hyperangular momentum: applications to atomic and molecular science. In: Tsipis, C.A., Popov, V.S., Herschbach, D.R., Avery, J.S. (eds.) New Methods in Quantum Theory, pp. 233–250. Kluwer (1996)Google Scholar
  16. 16.
    Aquilanti, V., Cavalli, S., Coletti, C., Grossi, G.: Alternative sturmian bases and momentum space orbitals: an application to the hydrogen molecular ion. Chem. Phys. 209, 405–419 (1996)CrossRefGoogle Scholar
  17. 17.
    Aquilanti, V., Cavalli, S., Coletti, C.: The \(d\)-dimensional hydrogen atom: hyperspherical harmonics as momentum space orbitals and alternative sturmian basis sets. Chem. Phys. 214, 1–13 (1997)CrossRefGoogle Scholar
  18. 18.
    Aquilanti, V., Cavalli, S., Coletti, C., Di Domenico, D., Grossi, G.: Hyperspherical harmonics as sturmian orbitals in momentum space: a systematic approach to the few-body coulomb problem. Int. Rev. Phys. Chem. 20, 673–709 (2001)CrossRefGoogle Scholar
  19. 19.
    Aquilanti, V., Caligiana, A., Cavalli, S., Coletti, C.: Hydrogenic orbitals in momentum space and hyperspherical harmonics. Elliptic sturmian basis sets. Int. J. Quant. Chem. 92, 212–228 (2003)CrossRefGoogle Scholar
  20. 20.
    Aquilanti, V., Cavalli, S., Coletti, C.: Hyperspherical symmetry of hydrogenic orbitals and recoupling coefficients among alternative bases. Phys. Rev. Lett. 80, 3209–3212 (1998)CrossRefGoogle Scholar
  21. 21.
    Anderson, R.W., Aquilanti, V., Bitencourt, A.C.P., Marinelli, D., Ragni, M.: The screen representation of spin networks: 2D recurrence, eigenvalue equation for 6j symbols, geometric interpretation and hamiltonian dynamics. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 46–59. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39643-4_4 CrossRefGoogle Scholar
  22. 22.
    Ragni, M., Littlejohn, R.G., Bitencourt, A.C.P., Aquilanti, V., Anderson, R.W.: The screen representation of spin networks: images of 6j symbols and semiclassical features. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 60–72. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39643-4_5 CrossRefGoogle Scholar
  23. 23.
    Bitencourt, A.C.P., Marzuoli, A., Ragni, M., Anderson, R.W., Aquilanti, V.: Exact and asymptotic computations of elementary spin networks: classification of the quantum–classical boundaries. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 723–737. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31125-3_54 CrossRefGoogle Scholar
  24. 24.
    Marinelli, D., Marzuoli, A., Aquilanti, V., Anderson, R.W., Bitencourt, A.C.P., Ragni, M.: Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 508–521. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_35 Google Scholar
  25. 25.
    Arruda, M.S., Santos, R.F., Marinelli, D., Aquilanti, V.: Spin-coupling diagrams and incidence geometry: a note on combinatorial and quantum-computational aspects. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 431–442. Springer, Cham (2016). doi: 10.1007/978-3-319-42085-1_33 CrossRefGoogle Scholar
  26. 26.
    Aquilanti, V., Marinelli, D., Marzuoli, A.: Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials. J. Phys. A: Math. Theor. 46, 175303 (2013). arXiv:1301.1949v2 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ragni, M., Bitencourt, A.C.P., da S. Ferreira, C., Aquilanti, V., Anderson, R.W., Littlejohn, R.G.: Exact computation and asymptotic approximations of 6j symbols: Illustration of their semiclassical limits. Int. J. Quant. Chem. 110(3), 731–742 (2010)CrossRefGoogle Scholar
  28. 28.
    Aquilanti, V., Bitencourt, A., da S. Ferreira, C., Marzuoli, A., Ragni, M.: Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications. Theor. Chem. Acc. 123, 237–247 (2009)CrossRefGoogle Scholar
  29. 29.
    Santos, R.F., Bitencourt, A.C.P., Ragni, M., Prudente, F., Coletti, C., Marzuoli, A., Aquilanti, V.: Couplings and recouplings of four angular momenta: alternative \(9j\) symbols and spin addition diagrams. J. Mol. Model. (2017). doi: 10.1007/s00894-017-3320-1
  30. 30.
    Bonatsos, D., Daskaloyannis, C.: Quantum groups and their applications in nuclear physics. Prog. Part. Nucl. Phys. 43, 537–618 (1999)CrossRefGoogle Scholar
  31. 31.
    Mizoguchi, S., Tada, T.: Three- dimensional gravity from the Turaev-Viro invariant. Phys. Rev. Lett. 68, 1795–1798 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Turaev, V.G., Viro, O.Y.: State sum invariants of 3-manifolds and quantum \(6j\) symbols. Topology 31, 865–903 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Carter, J.S., Daniel, E.F., Saito, M.: The Classical and Quantum \(6j\)-Symbols. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  34. 34.
    Taylor, Y.U., Woodward, C.T.: \(6j\) symbols for \({U}_q(sl_2)\) non-Euclidean tetrahedra. Sel. Math. New Ser. 11, 539–571 (2005)CrossRefzbMATHGoogle Scholar
  35. 35.
    Khavkine, I.: Recurrence relation for the \(6j\)-symbol of \(suq(2)\) as a symmetric eigenvalue problem. Int. J. Geom. Methods Mod. Phy. 12, 1550117 (2015). (12 pages)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Anderson, R., Aquilanti, V., da S. Ferreira, C.: Exact computation and large angular momentum asymptotics of \(3nj\) symbols: semiclassical disentangling of spin-networks. J. Chem. Phys. 129, 161101 (2008). (5 pages)CrossRefGoogle Scholar
  37. 37.
    Neville, D.E.: A technique for solving recurrence relations approximately and its application to the 3-J and 6-J symbols. J. Math. Phys. 12(12), 2438–2453 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Braun, P.A.: Discrete semiclassical methods in the theory of Rydberg atoms in external fields. Rev. Mod. Phys. 65, 115–161 (1993)CrossRefGoogle Scholar
  39. 39.
    Anderson, R.: Discrete orthogonal transformations corresponding to the discrete polynomials of the askey scheme. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 490–507. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_34 Google Scholar
  40. 40.
    Murakami, J.: Volume formulas for a spherical tetrahedron. Proc. Am. Math. Soc. 140, 3289–3295 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Bitencourt, A.C.P., Ragni, M., Littlejohn, R.G., Anderson, R., Aquilanti, V.: The screen representation of vector coupling coefficients or wigner 3j symbols: exact computation and illustration of the asymptotic behavior. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 468–481. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_32 Google Scholar
  42. 42.
    Kay, D.C.: College Geometry a Unified Development. CRC Press Taylor and Francis Group, Boca Raton (2011)zbMATHGoogle Scholar
  43. 43.
    Anderson, R.W., Aquilanti, V.: The discrete representation correspondence between quantum and classical spatial distributions of angular momentum vectors. J. Chem. Phys. 124, 214104 (2006). (9 pages)CrossRefGoogle Scholar
  44. 44.
    Biedenharn, L.C., Lohe, M.A.: Quantum Group Symmetry and q-Tensor Algebras. World Scientific, Singapore (1995)CrossRefzbMATHGoogle Scholar
  45. 45.
    Bitencourt, A.C.P., Marzuoli, A., Ragni, M., Anderson, R.W., Aquilanti, V.: Exact and asymptotic computations of elementary spin networks: classification of the quantum–classical boundaries. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 723–737. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31125-3_54 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA
  2. 2.Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaPerugiaItaly
  3. 3.Istituto di Struttura Della MateriaConsiglio Nazionale Delle RicercheRomeItaly

Personalised recommendations