Advertisement

A Diabatic Electronic State System to Describe the Internal Conversion of Azulene

  • Shiladitya Banerjee
  • Dimitrios SkouterisEmail author
  • Vincenzo Barone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10408)

Abstract

A diabatic system of two electronic potential energy surfaces as well as the coupling between them is presented. The system is to be used to study the dynamics of the S\(_1 \rightarrow \) S\(_0\) internal conversion of azulene and is based on single point calculations of the minima of the two surfaces and a dipole-quadrupole (DQ) diabatization. Based on this, a couple of harmonic diabatic surfaces together with a linear coupling surface have been devised. Some preliminary dynamics results are shown.

Keywords

Azulene Internal conversion Diabatic states 

Notes

Acknowledgements

DS wishes to thank the European Research Council for a fellowship in the framework of the ERC Advanced Grant Project DREAMS “Development of a Research Environment for Advanced Modeling of Soft Matter”, GA N. 320951. Contribution from the project PRIN 2015 - STARS in the CAOS - Simulation Tools for Astrochemical Reactivity and Spectroscopy in the Cyberinfrastructure for Astrochemical Organic Species, cod. 2015F59J3R is acknowledged. The work was also supported by the Italian MIUR (FIRB 2012: “Progettazione di materiali nanoeterogenei per la conversione di energia solare”, prot.:RBFR122HFZ). SB wishes to thank Dr. Alberto Baiardi for fruitful discussions.

References

  1. 1.
    Groen, J., Deamer, D.W., Kros, A., Ehrenfreund, P.: Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components. Orig. Life Evol. Biosph. 42, 295–306 (2012)CrossRefGoogle Scholar
  2. 2.
    Parker, D.S.N., Zhang, F., Kim, Y.S., Kaiser, R.I., Landera, A., Kislov, V.V., Mebel, A.M., Tielens, A.G.G.M.: Low temperature formation of naphthalene and its role in the synthesis of PAHs (Polycyclic Aromatic Hydrocarbons) in the interstellar medium. PNAS 109, 53–58 (2012)CrossRefGoogle Scholar
  3. 3.
    Balucani, N.: Elementary reactions and their role in gas-phase prebiotic chemistry. Int. J. Mol. Sci. 10, 2304–2335 (2009)CrossRefGoogle Scholar
  4. 4.
    Numata, Y., Toyoshima, S., Okuyama, K., Yasunami, M., Suzuka, I.: S\(_1\)-state internal conversion of isolated azulene derivatives. J. Phys. Chem. A 113, 9603–9611 (2009)CrossRefGoogle Scholar
  5. 5.
    Rentzepis, P.M.: Direct measurements of radiationless transitions in liquids. Chem. Phys. Lett. 2, 117–120 (1968)CrossRefGoogle Scholar
  6. 6.
    Hochstrasser, R.M., Li, Y.Y.: Spectral manifestations of nonradiative processes in azulene. J. Mol. Spectrosc. 41, 297–301 (1972)CrossRefGoogle Scholar
  7. 7.
    Ippen, F.P., Shank, C.V., Woerner, R.L.: Picosecond dynamics of azulene. Chem. Phys. Lett. 46, 20–23 (1977)CrossRefGoogle Scholar
  8. 8.
    Schwarzer, D., Troe, J., Schroeder, J.: S\(_1\) lifetime of azulene in solution ber. Bunsen-Ges. Phys. Chem. 95, 933–934 (1991)CrossRefGoogle Scholar
  9. 9.
    Tittelbach-Helmrich, D., Wagner, B.D., Steer, R.P.: The effect of solvent viscosity on the population relaxation times of the S\(_1\) state of azulene and related compounds. Chem. Phys. Lett. 209, 464–468 (1993)CrossRefGoogle Scholar
  10. 10.
    Wagner, B.D., Szymanski, M., Steer, R.P.: Subpicosecond pump-probe measurements of the electronic relaxation rates of the S\(_1\) states of azulene and related compounds in polar and nonpolar solvents. J. Chem. Phys. 98, 301–307 (1993)CrossRefGoogle Scholar
  11. 11.
    Wurzer, A.J., Wilhelm, T., Piel, J., Riedle, E.: Comprehensive measurement of the S\(_1\) azulene relaxation dynamics and observation of vibrational wavepacket motion. Chem. Phys. Lett. 299, 296–302 (1999)CrossRefGoogle Scholar
  12. 12.
    Foggi, P., Neuwahl, F.V.R., Moroni, L., Salvi, P.R.: S\(_1 \rightarrow \) S\(_n\) and S\(_2 \rightarrow \) S\(_n\) absorption of azulene: femtosecond transient spectra and excited state calculations. J. Phys. Chem. A 107, 1689–1696 (2003)CrossRefGoogle Scholar
  13. 13.
    Amirav, A., Jortner, J.: J. Chem. Phys. 81, 4200–4205 (1984)CrossRefGoogle Scholar
  14. 14.
    Suzuki, T., Ito, M.: J. Phys. Chem. 91, 3537–3542 (1987)CrossRefGoogle Scholar
  15. 15.
    Bearpark, M.J., Bernardi, F., Clifford, S., Olivucci, M., Robb, M.A., Smith, B.R., Vreven, T.: J. Am. Chem. Soc. 118, 169–175 (1996)CrossRefGoogle Scholar
  16. 16.
    Ruth, A.A., Kim, E.-K., Hese, A.: Phys. Chem. Chem. Phys. 1, 5121–5128 (1999)CrossRefGoogle Scholar
  17. 17.
    Diau, E.W.-G., Feyter, S.D., Zewail, A.H.: J. Chem. Phys. 110, 9785–9788 (1999)CrossRefGoogle Scholar
  18. 18.
    Hoyer, C.E., Xu, X., Ma, D., Gagliardi, L., Truhlar, D.G.: Constructing diabatic representations using adiabatic and approximate diabatic data - coping with diabolical singularities. J. Chem. Phys. 141, 114104 (2014)CrossRefGoogle Scholar
  19. 19.
    Skouteris, D., Barone, V.: A new Gaussian MCTDH program: implementation and validation on the levels of the water and glycine molecules. J. Chem. Phys. 140, 244104 (2014)CrossRefGoogle Scholar
  20. 20.
    Skouteris, D., Barone, V.: Nonadiabatic photodynamics of phenol on a realistic potential energy surface by a novel multilayer Gaussian MCTDH program. Chem. Phys. Lett. 636, 15–21 (2015)CrossRefGoogle Scholar
  21. 21.
    Skouteris, D.: Time-dependent calculations on systems of chemical interest: dynamical and kinetic approaches. Int. J. Quant. Chem. 116, 1618–1622 (2016)CrossRefGoogle Scholar
  22. 22.
    Skouteris, D., Laganà, A., Capecchi, G., Werner, H.-J.: Wave packet calculations for the Cl \(+\) H\(_2\) reaction. Int. J. Quant. Chem. 96, 562–567 (2004)CrossRefGoogle Scholar
  23. 23.
    Skouteris, D., Laganà, A., Capecchi, G., Werner, H.-J.: Rotational and alignment effects in a wavepacket calculation for the Cl \(+\) H\(_2\) reaction. Int. J. Quant. Chem. 99, 577–584 (2004)CrossRefGoogle Scholar
  24. 24.
    Skouteris, D., Laganà, A.: Non-born-oppenheimer MCTDH calculations on the confined H\(_2^+\) molecular ion. Chem. Phys. Lett. 500, 144–148 (2010)CrossRefGoogle Scholar
  25. 25.
    Skouteris, D., Laganà, A., Pirani, F.: An approximate quantum mechanical study of the N \(+\) O \(\rightarrow \) NO\(^+ +\) e\(^-\) associative ionization. Chem. Phys. Lett. 557, 43–48 (2013)CrossRefGoogle Scholar
  26. 26.
    Skouteris, D., Laganà, A.: Electronuclear multi-configuration time-dependent Hartree calculations on the confined H atom with mobile electron and nucleus. Int. J. Quant. Chem. 113, 1333–1338 (2013)CrossRefGoogle Scholar
  27. 27.
    Skouteris, D., Laganà, A.: MCTDH calculations on the OH radical moving along a (10,0) nanotube. Chem. Phys. Lett. 575, 18–22 (2013)CrossRefGoogle Scholar
  28. 28.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Bloino, J., Janesko, B.G., Izmaylov, A.F., Lipparini, F., Zheng, G., Sonnenberg, J.L., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Parandekar, P.V., Mayhall, N.J., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian Development Version, Revision I.03. Gaussian Inc., Wallingford CT (2014)Google Scholar
  29. 29.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  30. 30.
    Hariharan, P.C., Pople, J.A.: Influence of polarization function on molecular-orbital hydrogenation energies. Theor. Chem. Acc. 28, 213–222 (1973)CrossRefGoogle Scholar
  31. 31.
    Banerjee, S., Baiardi, A., Bloino, J., Barone, V.: J. Chem. Theory Comput. 12, 774 (2016)Google Scholar
  32. 32.
    Lou, Y., Chang, J., Jorgensen, J., Lemal, D.M.: J. Am. Chem. Soc. 124, 15302 (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shiladitya Banerjee
    • 1
  • Dimitrios Skouteris
    • 1
    Email author
  • Vincenzo Barone
    • 1
  1. 1.Scuola Normale SuperiorePisaItaly

Personalised recommendations