Advertisement

Combinatorial and Geometrical Origins of Regge Symmetries: Their Manifestations from Spin-Networks to Classical Mechanisms, and Beyond

  • Vincenzo Aquilanti
  • Manuela S. Arruda
  • Cecilia ColettiEmail author
  • Robert Littlejohn
  • Robenilson F. Santos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10408)

Abstract

Tullio Regge discovered new symmetries in 1958, hidden in formulas for calculations of the coupling and recoupling coefficients of quantum angular momentum theory, as developed principally by Wigner and Racah: the only known (limited) application appeared computational. Ten years later, in a paper with Ponzano, Regge provided a semiclassical interpretation showing relevance to the basic geometry of quadrilaterals and tetrahedra, and opening also a promising road to quantum gravity, still currently being explored. New facets are here indicated, continuing a sequence of papers in this Lecture Notes series and elsewhere. We emphasize how an integrated combinatorial and geometrical interpretation is emerging, and also examples from the quantum mechanics of atoms and molecules are briefly documented. Attention is dedicated to the recently pointed out connection between the quantum mechanics of spin recouplings and the Grashof analysis of four-bar linkages, with perspective implications at the molecular level.

Keywords

Quantum angular momentum Semiclassical asymptotics Wigner-Racah coupling and recoupling 3j and 6j symbols Kepler-Coulomb Sturmian orbitals 

Notes

Acknowledgments

Robenilson Ferreira is grateful to Brazilian CAPES for a sandwich doctoral (PDSE88881.134388/2016-01) fellowship to the Perugia University. Manuela Arruda is grateful to Brazilian CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for a post doctoral fellowship to the Perugia University. Vincenzo Aquilanti and Frederico Vasconcellos Prudente thank Brazilian CAPES for a Special Visiting Professorship at the Bahia Federal University (PVE 027/2013) and the Italian MIUR for Grant SIR 2014 (RBSI14U3VF).

References

  1. 1.
    Regge, T.: Symmetry properties of Clebsch- Gordan’s coefficients. Nuov. Cimento 10, 544–545 (1958)CrossRefzbMATHGoogle Scholar
  2. 2.
    Regge, T.: Symmetry properties of Racah’s coefficients. Nuov. Cimento 11, 116–117 (1959)CrossRefGoogle Scholar
  3. 3.
    Racah, G.: Theory of complex spectra. II. Phys. Rev. 62, 438–462 (1942)CrossRefGoogle Scholar
  4. 4.
    Biedenharn, L.C., Dam, V.H.: Quantum Theory of Angular Momentum. Academic Press, New York (1965)Google Scholar
  5. 5.
    Bargmann, V.: On the representations of the rotation group. Rev. Mod. Phys. 34, 829–845 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bincer, A.M.: Interpretation of the symmetry of the Clebsch- Gordan coefficients discovered by Regge. J. Math. Phys. 11, 1835–1844 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Bloch et al., F. (ed.) Spectroscopic and Group Theoretical Methods in Physics, pp. 1–58. North-Holland, Amsterdam (1968)Google Scholar
  8. 8.
    Wigner, E.P.: Group Theory: And its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)zbMATHGoogle Scholar
  9. 9.
    Varshalovich, D., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)CrossRefGoogle Scholar
  10. 10.
    Koekoek, R., Lesky, P.A., Swarttouw, R.: Hypergeometric Orthogonal Polynomials and Their q-Analogues, 1st edn. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable (Scientific Computation). Springer, Heidelberg (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Aquilanti, V., Cavalli, S., De Fazio, D.: Angular and hyperangular momentum coupling coefficients as hahn polynomials. J. Phys. Chem. 99(42), 15694–15698 (1995)CrossRefGoogle Scholar
  13. 13.
    Aquilanti, V., Haggard, H.M., Littlejohn, R.G., Yu, L.: Semiclassical analysis of Wigner \(3j\)-symbol. J. Phys. A 40(21), 5637–5674 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schulten, K., Gordon, R.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum mechanical coupling of angular momenta. J. Math. Phys. 16, 1961–1970 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bitencourt, A.C.P., Ragni, M., Littlejohn, R.G., Anderson, R., Aquilanti, V.: The screen representation of vector coupling coefficients or Wigner 3j symbols: exact computation and illustration of the asymptotic behavior. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 468–481. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_32 Google Scholar
  16. 16.
    Neville, D.E.: A technique for solving recurrence relations approximately and its application to the 3-J and 6-J symbols. J. Math. Phys. 12(12), 2438–2453 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Neville, D.E.: Volume operator for spin networks with planar or cylindrical symmetry. Phys. Rev. D 73(12), 124004 (2006)CrossRefGoogle Scholar
  18. 18.
    Aquilanti, V., Capecchi, G.: Harmonic analysis and discrete polynomials from semiclassical angular momentum theory to the hyperquantization algorithm. Theor. Chem. Acc. 104, 183–188 (2000)CrossRefGoogle Scholar
  19. 19.
    Aquilanti, V., Coletti, C.: \(3nj\)-symbols and harmonic superposition coefficients: an icosahedral abacus. Chem. Phys. Lett. 344, 601–611 (2001)CrossRefGoogle Scholar
  20. 20.
    Lévy-Leblond, J.M., Lévy-Nahas, M.: Symmetrical coupling of three angular momenta. J. Math. Phys. 6(9), 1372–1380 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Aquilanti, V., Haggard, H.M., Hedeman, A., Jeevangee, N., Littlejohn, R., Yu, L.: Semiclassical mechanics of the Wigner \(6j\)-symbol. [math-ph], J. Phys. A 45(065209) (2012). arXiv:1009.2811v2
  22. 22.
    Neville, D.E.: A technique for solving recurrence relations approximately and its application to the 3-J and 6-J symbols. J. Math. Phys. 12, 2438–2453 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Anderson, R.W., Aquilanti, V., Bitencourt, A.C.P., Marinelli, D., Ragni, M.: The screen representation of spin networks: 2D recurrence, eigenvalue equation for 6j symbols, geometric interpretation and Hamiltonian dynamics. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 46–59. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39643-4_4 CrossRefGoogle Scholar
  24. 24.
    Ragni, M., Littlejohn, R.G., Bitencourt, A.C.P., Aquilanti, V., Anderson, R.W.: The screen representation of spin networks: images of 6j symbols and semiclassical features. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 60–72. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39643-4_5 CrossRefGoogle Scholar
  25. 25.
    Bitencourt, A.C.P., Marzuoli, A., Ragni, M., Anderson, R.W., Aquilanti, V.: Exact and asymptotic computations of elementary spin networks: classification of the quantum–classical boundaries. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 723–737. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31125-3_54 CrossRefGoogle Scholar
  26. 26.
    Schulten, K., Gordon, R.: Semiclassical approximations to 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta. J. Math. Phys. 16, 1971–1988 (1975)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mohanty, Y.: The Regge symmetry is a scissors congruence in hyperbolic space. Algebr. Geom. Topol. 3, 1–31 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Roberts, J.: Classical 6j-symbols and the tetrahedron. Geom. Topol. 3, 21–66 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Aquilanti, V., Marinelli, D., Marzuoli, A.: Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials. [math-ph]. J. Phys. A: Math. Theor. 46, 175303 (2013). arXiv:1301.1949v2
  30. 30.
    Littlejohn, R., Yu, L.: Uniform semiclassical approximation for the Wigner \(6j\) symbol in terms of rotation matrices. J. Phys. Chem. A 113, 14904–14922 (2009)CrossRefGoogle Scholar
  31. 31.
    Ragni, M., Bitencourt, A.P.C., da S. Ferreira, C., Aquilanti, V., Anderson, R., Littlejohn, R.: Exact computation and asymptotic approximation of \(6j\) symbols. illustration of their semiclassical limits. Int. J. Quantum Chem. 110, 731–742 (2010)Google Scholar
  32. 32.
    De Fazio, D., Cavalli, S., Aquilanti, V.: Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics. the hyperquantization algorithm. Int. J. Quantum Chem. 93, 91–111 (2003)CrossRefGoogle Scholar
  33. 33.
    Anderson, R.W., Aquilanti, V., Marzuoli, A.: 3nj morphogenesis and semiclassical disentangling. J. Phys. Chem. A 113(52), 15106–15117 (2009)CrossRefGoogle Scholar
  34. 34.
    Anderson, R., Aquilanti, V., da S. Ferreira, C.: Exact computation and large angular momentum asymptotics of \(3nj\) symbols: semiclassical disentangling of spin-networks. J. Chem. Phys. 129(161101), 5 pages (2008)Google Scholar
  35. 35.
    Aquilanti, V., Cavalli, S., De Fazio, D.: Hyperquantization algorithm. I. Theory for triatomic systems. J. Chem. Phys. 109(10), 3792–3804 (1998)CrossRefGoogle Scholar
  36. 36.
    Marinelli, D., Marzuoli, A., Aquilanti, V., Anderson, R.W., Bitencourt, A.C.P., Ragni, M.: Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 508–521. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_35 Google Scholar
  37. 37.
    Aquilanti, V., Bitencourt, A.C.P., da S. Ferreira, C., Marzuoli, A., Ragni, M.: Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications. Theor. Chem. Acc. 123, 237–247 (2009)Google Scholar
  38. 38.
    Ragni, M., Bitencourt, A.C.P., Aquilanti, V., Anderson, R.W., Littlejohn, R.G.: Exact computation and asymptotic approximations of \(6j\) symbols: Illustration of their semiclassical limits. Int. J. Quantum Chem. 110(3), 731–742 (2010)CrossRefGoogle Scholar
  39. 39.
    Dörrie, H.: 100 Great Problems of Elementary Mathematics: Their History and Solution. Dover Publications, Inc., New York (1965)Google Scholar
  40. 40.
    Khimshiashvili, G., Siersma, D.: Cross- ratios of quadrilateral linkages. J. Singul. 13, 159–168 (2015)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Khimshiashvili, G.: Complex geometry of polygonal linkages. J. Math. Sci. 189, 132–149 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Biedenharn, L.C., Lohe, M.A.: Quantum group symmetry and q- Tensor algebras. World Scientific, Singapore (1995)CrossRefzbMATHGoogle Scholar
  43. 43.
    Bonatsos, D., Daskaloyannis, C.: Quantum groups and their applications in nuclear physics. Progress Part. Nucl. Phys. 43, 537–618 (1999)CrossRefGoogle Scholar
  44. 44.
    Mizoguchi, S., Tada, T.: Three- dimensional gravity from the Turaev-Viro invariant. Phys. Rev. Lett. 68, 1795–1798 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Turaev, V.G., Viro, O.Y.: State sum invariants of 3-manifolds and quantum 6\(j\)- symbols. Topology 31, 865–903 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Izmestiev, I.: Deformation of quadrilaterals and addition on elliptic curves, pp. 1–39 (2015). arXiv:1501.07157v1
  47. 47.
    Taylor, Y.U., Woodward, C.T.: 6\(j\) symbols for \(U_q( {sl}_2)\) non-euclidean tetrahedra. Sel. Math. New Ser. 11, 539–571 (2005)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Murakami, J.: Volume formulas for a spherical tetrahedron. Proc. Americ. Math. Soc. 140, 3289–3295 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Taylor, Y.U., Woodward, C.T.: Spherical tetrahedra and invariants of 3-manifolds, pp. 1–18 (2004). arXiv:math/0406228v2
  50. 50.
    Bianchi, E., Modesto, L.: The perturbative Regge- calculus regime of loop quantum gravity. Nucl. Phys. B 796, 581–621 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Williams, R.M.: 6\(j\)- symbols and discrete quantum gravity. Nucl. Phys. B (Proc. Suppl.) 88, 124–131 (2000)Google Scholar
  52. 52.
    Aquilanti, V., Marzuoli, A.: Desargues spin networks and their Regge regularized geometric realization (to be published)Google Scholar
  53. 53.
    Anderson, R.W., Aquilanti, V.: Spherical and hyperbolic spin networks: the \(q\)-extensions of Wigner-Racah 6\(j\) coefficients and general orthogonal discrete basis sets in applied quantum mechanics. In: Gervasi, O., et al. (eds.) ICCSA 2017, Part V. LNCS, vol. 10408, pp. 338–353. Springer, Cham (2017)Google Scholar
  54. 54.
    Aquilanti, V., Caglioti, C., Lombardi, A., Maciel, G.S., Palazzetti, F.: Screens for displaying chirality changing mechanisms of a series of peroxides and persulfides from conformational structures computed by quantum chemistry. In: Gervasi, O., et al. (eds.) ICCSA 2017, Part V. LNCS, vol. 10408, pp. 354–368. Springer, Cham (2017)Google Scholar
  55. 55.
    Anderson, R.: Discrete orthogonal transformations corresponding to the discrete polynomials of the askey scheme. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 490–507. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_34 Google Scholar
  56. 56.
    Santos, R.F., Bitencourt, A.C.P., Ragni, M., Prudente, F.V., Coletti, C., Marzuoli, A., Aquilanti, V.: Couplings and recouplings of four angular momenta: alternative \(9j\) symbols and spin addition diagrams. J. Mol. Model. (2017). doi: 10.1007/s00894-017-3320-1
  57. 57.
    Arruda, M.S., Santos, R.F., Marinelli, D., Aquilanti, V.: Spin-coupling diagrams and incidence geometry: a note on combinatorial and quantum-computational aspects. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 431–442. Springer, Cham (2016). doi: 10.1007/978-3-319-42085-1_33 CrossRefGoogle Scholar
  58. 58.
    Carter, J.S., Daniel, E.F., Saito, M.: The Classical and Quantum 6\(j\)- Symbols. Princeton University Press, New Jersey (1995)Google Scholar
  59. 59.
    Biedenharn, L.C., Louck, J.D.: Angular momentum in quantum physics. In: Rota, G.-C. (ed.) Encyclopedia of Mathematics and Its Applications, vol. 8. Addison-Wesley Publ. Co., Reading (1981)Google Scholar
  60. 60.
    Calderini, D., Cavalli, S., Coletti, C., Grossi, G., Aquilanti, V.: Hydrogenoid orbitals revisited: from slater orbitals to coulomb sturmians. J. Chem. Sci. 124, 187 (2012)CrossRefGoogle Scholar
  61. 61.
    Coletti, C., Calderini, D., Aquilanti, V.: \(d\)-dimensional kepler - coulomb sturmians and hyperspherical harmonics as complete orthonormal atomic and molecular orbitals. Adv. Quantum Chem. 67, 73 (2013)CrossRefGoogle Scholar
  62. 62.
    Aquilanti, V., Cavalli, S., Coletti, C., De Fazio, D., Grossi, G.: Hyperangular momentum: applications to atomic and molecular science. In: Tsipis, C.A., Popov, V.S., Herschbach, D.R., Avery, J.S. (eds.) New Methods in Quantum Theory, pp. 233–250. Kluwer (1996)Google Scholar
  63. 63.
    Aquilanti, V., Cavalli, S., Coletti, C., Grossi, G.: Alternative Sturmian bases and momentum space orbitals: an application to the hydrogen molecular ion. Chem. Phys. 209, 405–419 (1996)CrossRefGoogle Scholar
  64. 64.
    Aquilanti, V., Cavalli, S., Coletti, C.: The d-dimensional hydrogen atom: hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets. Chem. Phys. 214, 1–13 (1997)CrossRefGoogle Scholar
  65. 65.
    Aquilanti, V., Cavalli, S., Coletti, C., Domenico, D.D., Grossi, G.: Hyperspherical harmonics as Sturmian orbitals in momentum space: a systematic approach to the few-body Coulomb problem. Int. Rev. Phys. Chem. 20, 673–709 (2001)CrossRefGoogle Scholar
  66. 66.
    Aquilanti, V., Cavalli, S., Coletti, C.: Angular and hyperangular momentum recoupling, harmonic superposition and racah polynomials: a recursive algorithm. Chem. Phys. Lett. 344, 587–600 (2001)CrossRefGoogle Scholar
  67. 67.
    Aquilanti, V., Caligiana, A., Cavalli, S.: Hydrogenic elliptic orbitals, coulomb sturmian sets. Recoupling coefficients among alternative bases. Int. J. Quant. Chem. 92, 99–117 (2003)Google Scholar
  68. 68.
    Aquilanti, V., Caligiana, A., Cavalli, S., Coletti, C. Hydrogenic orbitals in momentum space and hyperspherical harmonics. Elliptic sturmian basis sets. Int. J. Quant. Chem. 92, 212–228 (2003)Google Scholar
  69. 69.
    Aquilanti, V., Cavalli, S., Coletti, C.: Hyperspherical symmetry of hydrogenic orbitals and recoupling coefficients among alternative bases. Phys. Rev. Lett. 80, 3209–3212 (1998)CrossRefGoogle Scholar
  70. 70.
    Pauling, L.: The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53, 1367–1400 (1931)CrossRefzbMATHGoogle Scholar
  71. 71.
    Marinelli, D.: Single and collective dynamics of discretized geometries (PhD thesis), University of Pavia, Italy (2013), ISBN: 978–88-95767-73-4Google Scholar
  72. 72.
    Kil’dyushov, M.S.: Hyperspherical functions of tree type in the N-body problem sov. J. Nucl. Phys. 15, 113 (1972)Google Scholar
  73. 73.
    Aquilanti, V., Grossi, G.: Angular momentum coupling schemes in the quantum mechanical treatment of P-state atom collisions. J. Chem. Phys. 73, 1165–1172 (1980)CrossRefGoogle Scholar
  74. 74.
    Aquilanti, V., Cavalli, S., Grossi, G.: Hund’s cases for rotating diatomic molecules and for atomic collisions: angular momentum coupling schemes and orbital alignment. Z Phys. D. 36, 215–219 (1996)CrossRefGoogle Scholar
  75. 75.
    Aquilanti, V., Cavalli, S., Grossi, G.: Discrete analogs of spherical harmonics and their use in quantum mechanics: the hyperquantization algorithm. Theor. Chim. Acta 79, 283–296 (1991)CrossRefGoogle Scholar
  76. 76.
    Aquilanti, V., Cavalli, S.: Discrete analogs of hyperspherical harmonics and their use for the quantum mechanical three body problem. In: Ciofi degli Atti, C., Pace, E., Salmé, G., Simula S. (eds.) Few-Body Problems in Physics. Few-Body Systems, vol. 6, pp. 573–580. Springer, Vienna (1992)Google Scholar
  77. 77.
    Fock, V.: Zur Theorie des Wasserstoffatoms. Z. Phys. 98, 145–154 (1935)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vincenzo Aquilanti
    • 1
    • 2
  • Manuela S. Arruda
    • 3
  • Cecilia Coletti
    • 4
    Email author
  • Robert Littlejohn
    • 5
  • Robenilson F. Santos
    • 6
    • 7
  1. 1.Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaPerugiaItaly
  2. 2.Consiglio Nazionale Delle RicercheRomeItaly
  3. 3.Centro de Ciências Exatas e TecnológicasUniversidade Federal do Recôncavo da BahiaCruz Das AlmasBrazil
  4. 4.Dipartimento di FarmaciaUniversità G. d’AnnunzioChietiItaly
  5. 5.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  6. 6.Instituto de FísicaUniversidade Federal da BahiaSalvadorBrazil
  7. 7.Instituto Federal de Alagoas, Campus PiranhasPiranhasBrazil

Personalised recommendations