Advertisement

The \( {\mathbf{HI}}\,\varvec{ + }\,{\mathbf{OH}}\, \to \,{\mathbf{H}}_{{\mathbf{2}}} {\mathbf{O}}\, + \,{\mathbf{I}} \) Reaction by First-Principles Molecular Dynamics: Stereodirectional and anti-Arrhenius Kinetics

  • Nayara D. CoutinhoEmail author
  • Valter H. Carvalho-Silva
  • Heibbe C. B. de Oliveira
  • Vincenzo Aquilanti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10408)

Abstract

Exemplary of four-atom processes, the series of reactions between OH and HX to give \( {\text{H}}_{2} {\text{O}} + {\text{X}} \) (here X is a halogen atom) is one of the most studied theoretically and experimentally: the kinetics for X = Br and I manifests an unusual anti-Arrhenius behavior, namely a marked decrease of the rate constants as the temperature increases, and this has intrigued theoreticians for a long time. Motivation of the work reported in this paper is the continuation of the investigation of the stereodirectional dynamics of these reaction as the prominent reason for the peculiar kinetics, started in previous papers on X = Br. A first-principles Born-Oppenheimer ‘canonical’ molecular dynamics approach involves trajectories step-by-step generated on a potential energy surface quantum mechanically calculated on-the-fly, and thermostatically equilibrated in order to correspond to a specific temperature. Previous refinements of the method permitted a high number of trajectories at 50, 200, 350 and 500 K, for which the sampling of initial conditions allowed us to characterize the stereodynamical effect. It was confirmed also for X = I that the adjustment of the reactants’ mutual orientation in order to encounter the entrance into the ‘cone of acceptance’ is crucial for reactivity. The aperture angle of this cone is dictated by a range of directions of approach compatible with the formation of the specific HOH angle of the product water molecule; and consistently the adjustment is progressively less effective at higher the kinetic energy. Thermal rate constants from this molecular dynamics approach are discussed: provided that the systematic sampling of the canonical ensemble is adequate as in this case, quantitative comparison with the kinetic experiments is obtained.

Notes

Acknowledgments

The authors acknowledge grants from Brazilian CAPES, FAPEG, FAPDF, CNPQ and FINATEC. V. H. Carvalho-Silva thanks PrP/UEG for research funding through PROBIP and PRO-PROJETOS programs.

References

  1. 1.
    Read, K.A., Mahajan, A.S., Carpenter, L.J., Evans, M.J., Faria, B.V.E., Heard, D.E., Hopkins, J.R., Lee, J.D., Moller, S.J., Lewis, A.C., Mendes, L., McQuaid, J.B., Oetjen, H., Saiz-Lopez, A., Pilling, M.J., Plane, J.M.C.: Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453, 1232–1235 (2008)CrossRefGoogle Scholar
  2. 2.
    Saiz-Lopez, A., von Glasow, R.: Reactive halogen chemistry in the troposphere. Chem. Soc. Rev. 41, 6448–6472 (2012)CrossRefGoogle Scholar
  3. 3.
    Zuo, J., Zhao, B., Guo, H., Xie, D.: A global coupled cluster potential energy surface for HCl + OH ↔ Cl + H2O. Phys. Chem. Chem. Phys. 120, 3433–3440 (2016)Google Scholar
  4. 4.
    Zuo, J., Zhao, B., Guo, H., Xie, D.: A global coupled cluster potential energy surface for HCl + OH ↔ Cl + H2O. Phys. Chem. Chem. Phys. 19, 9770–9777 (2017)CrossRefGoogle Scholar
  5. 5.
    Ravishankara, A.R., Wine, P.H., Wells, J.R.: The OH + HBr reaction revisited. J. Chem. Phys. 83, 447–448 (1985)CrossRefGoogle Scholar
  6. 6.
    Sims, I.R., Smith, I.W.M., Clary, D.C., Bocherel, P., Rowe, B.R.: Ultra-low temperature kinetics of neutral-neutral reactions - new experimental and theoretical results for OH + HBr between 295 K and 23 K. J. Chem. Phys. 101, 1748–1751 (1994)CrossRefGoogle Scholar
  7. 7.
    Atkinson, D.B., Jaramillo, V.I., Smith, M.A.: Low-temperature kinetic behavior of the bimolecular reaction OH + HBr (76−242 K). J. Phys. Chem. A 101, 3356–3359 (1997)CrossRefGoogle Scholar
  8. 8.
    Bedjanian, Y., Riffault, V., Le Bras, G., Poulet, G.: Kinetic study of the reactions of OH and OD with HBr and DBr. J. Photochem. Photobiol. A Chem. 128, 15–25 (1999)CrossRefGoogle Scholar
  9. 9.
    Jaramillo, V.I., Smith, M.A.: Temperature-dependent kinetic isotope effects in the gas-phase reaction: OH + HBr. J. Phys. Chem. A 105, 5854–5859 (2001)CrossRefGoogle Scholar
  10. 10.
    Mullen, C., Smith, M.A.: Temperature dependence and kinetic isotope effects for the OH + HBr reaction and H/D isotopic variants at low temperatures (53–135 K) measured using a pulsed supersonic Laval nozzle flow reactor. J. Phys. Chem. A 109, 3893–3902 (2005)CrossRefGoogle Scholar
  11. 11.
    Jaramillo, V.I., Gougeon, S., Le Picard, S.D., Canosa, A., Smith, M.A., Rowe, B.R.: A consensus view of the temperature dependence of the gas phase reaction: OH + HBr → H2O + Br. Int. J. Chem. Kinet. 34, 339–344 (2002)CrossRefGoogle Scholar
  12. 12.
    Takacs, G.A., Glass, G.P.: Reactions of hydroxyl radicals with some hydrogen halides. J. Phys. Chem. 77, 1948–1951 (1973)CrossRefGoogle Scholar
  13. 13.
    Leod, H. M., Balestra, C., Jourdain, J.L., Laverdet, G., Le Bras, G.: Kinetic study of the reaction OH + HI by laser photolysis-resonance fluorescence. Int. J. Chem. Kinet. 22, 1167–1176 (1990)CrossRefGoogle Scholar
  14. 14.
    Lancar, I.T., Mellouki, A., Poulet, G.: Kinetics of the reactions of hydrogen iodide with hydroxyl and nitrate radicals. Chem. Phys. Lett. 177, 554–558 (1991)CrossRefGoogle Scholar
  15. 15.
    Butkovskaya, N.I., Setser, D.W.: Dynamics of OH and OD radical reactions with HI and GeH4 studied by infrared chemiluminescence of the H2O and HDO products. J. Chem. Phys. 106, 5028–5042 (1997)CrossRefGoogle Scholar
  16. 16.
    Campuzano-Jost, P., Crowley, J.N.: Kinetics of the reaction of OH with HI between 246 and 353 K. J. Phys. Chem. A 103, 2712–2719 (1999)CrossRefGoogle Scholar
  17. 17.
    Coutinho, N.D., Silva, V.H.C., de Oliveira, H.C.B., Camargo, A.J., Mundim, K.C., Aquilanti, V.: Stereodynamical origin of anti-arrhenius kinetics: negative activation energy and roaming for a four-atom reaction. J. Phys. Chem. Lett. 6, 1553–1558 (2015)CrossRefGoogle Scholar
  18. 18.
    Coutinho, N.D., Aquilanti, V., Silva, V.H.C., Camargo, A.J., Mundim, K.C., de Oliveira, H.C.B.: Stereodirectional origin of anti-arrhenius kinetics for a tetraatomic Hydrogen exchange reaction: Born-Oppenheimer molecular dynamics for OH + HBr. J. Phys. Chem. A 120, 5408–5417 (2016)CrossRefGoogle Scholar
  19. 19.
    Silva, V.H.C., Aquilanti, V., de Oliveira, H.C.B., Mundim, K.C.: Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution. Chem. Phys. Lett. 590, 201–207 (2013)CrossRefGoogle Scholar
  20. 20.
    Carvalho-Silva, V.H., Aquilanti, V., de Oliveira, H.C.B., Mundim, K.C.: Deformed transition-state theory: deviation from arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime. J. Comput. Chem. 38, 178–188 (2017)CrossRefGoogle Scholar
  21. 21.
    Cavalli, S., Aquilanti, V., Mundim, K.C., De Fazio, D.: Theoretical reaction kinetics astride the transition between moderate and deep tunneling regimes: the F + HD case. J. Phys. Chem. A 118, 6632–6641 (2014)CrossRefGoogle Scholar
  22. 22.
    Aquilanti, V., Mundim, K.C., Elango, M., Kleijn, S., Kasai, T.: Temperature dependence of chemical and biophysical rate processes: phenomenological approach to deviations from Arrhenius law. Chem. Phys. Lett. 498, 209–213 (2010)CrossRefGoogle Scholar
  23. 23.
    Aquilanti, V., Mundim, K.C., Cavalli, S., De Fazio, D., Aguilar, A., Lucas, J.M.: Exact activation energies and phenomenological description of quantum tunneling for model potential energy surfaces. The F + H2 reaction at low temperature. Chem. Phys. 398, 186–191 (2012)CrossRefGoogle Scholar
  24. 24.
    Aquilanti, V., Coutinho, N.D., Carvalho-Silva, V.H.: Kinetics of low-temperature transitions and reaction rate theory from non-equilibrium distributions. Philos. Trans. R. Soc. London A 375, 20160204 (2017)CrossRefGoogle Scholar
  25. 25.
    Moise, A., Parker, D.H., Ter Meulen, J.J.: State-to-state inelastic scattering of OH by HI: A comparison with OH-HCI and OH-HBr. J. Chem. Phys. 126, 124302 (2007)CrossRefGoogle Scholar
  26. 26.
    Canneaux, S., Xerri, B., Louis, F., Cantrel, L.: Theoretical study of the gas-phase reactions of Iodine atoms (2P3/2) with H2, H2O, HI, and OH. J. Phys. Chem. A 114, 9270–9288 (2010)CrossRefGoogle Scholar
  27. 27.
    Hao, Y., Gu, J., Guo, Y., Zhang, M., Xie, Y., Schaefer III, H.F.: Spin-orbit corrected potential energy surface features for the I (2P3/2) + H2O → HI + OH forward and reverse reactions. Phys. Chem. Chem. Phys. 16, 2641–2646 (2014)CrossRefGoogle Scholar
  28. 28.
    Marx, D., Hutter, J.: Ab initio molecular dynamics: theory and implementation. Mod. Methods Algorithms Quantum Chem. 1, 301–449 (2000)Google Scholar
  29. 29.
    Paranjothy, M., Sun, R., Zhuang, Y., Hase, W.L.: Direct chemical dynamics simulations: coupling of classical and quasiclassical trajectories with electronic structure theory. WIRE Comput. Mol. Sci. 3, 296–316 (2013)CrossRefGoogle Scholar
  30. 30.
    Marx, D., Hutter, J.: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  31. 31.
    Wang, L.-P., Titov, A., McGibbon, R., Liu, F., Pande, V.S., Martínez, T.J.: Discovering chemistry with an ab initio nanoreactor. Nat. Chem. 6, 1044–1048 (2014)CrossRefGoogle Scholar
  32. 32.
    Martyna, G.J., Klein, M.L., Tuckerman, M.: Nose-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992)CrossRefGoogle Scholar
  33. 33.
    de Oliveira-Filho, A.G.S., Ornellas, F.R., Bowman, J.M.: Quasiclassical trajectory calculations of the rate constant of the OH + HBr → Br + H2O reaction using a full-dimensional Ab initio potential energy surface over the temperature range 5 to 500 K. J. Phys. Chem. Lett. 5, 706–712 (2014)CrossRefGoogle Scholar
  34. 34.
    de Oliveira-Filho, A.G.S., Ornellas, F.R., Bowman, J.M.: Energy disposal and thermal rate constants for the OH + HBr and OH + DBr reactions: quasiclassical trajectory calculations on an accurate potential energy surface. J. Phys. Chem. A 118, 12080–12088 (2014)CrossRefGoogle Scholar
  35. 35.
    Tsai, P.-Y., Che, D.-C., Nakamura, M., Lin, K.-C., Kasai, T.: Orientation dependence in the four-atom reaction of OH + HBr using the single-state oriented OH radical beam. Phys. Chem. Chem. Phys. 12, 2532–2534 (2010)CrossRefGoogle Scholar
  36. 36.
    Tsai, P.-Y., Che, D.-C., Nakamura, M., Lin, K.-C., Kasai, T.: Orientation dependence for Br formation in the reaction of oriented OH radical with HBr molecule. Phys. Chem. Chem. Phys. 13, 1419–1423 (2011)CrossRefGoogle Scholar
  37. 37.
    Kasai, T., Che, D.-C., Okada, M., Tsai, P.-Y., Lin, K.-C., Palazzetti, F., Aquilanti, V.: Directions of chemical change: experimental characterization of the stereodynamics of photodissociation and reactive processes. Phys. Chem. Chem. Phys. 16, 9776–9790 (2014)CrossRefGoogle Scholar
  38. 38.
    Frank, I., Parrinello, M., Klamt, A.: Insight into chemical reactions from first-principles simulations: the mechanism of the gas-phase reaction of OH radicals with Ketones. J. Phys. Chem. A 102, 3614–3617 (1998)CrossRefGoogle Scholar
  39. 39.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  40. 40.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)CrossRefGoogle Scholar
  41. 41.
    Tsai, P.-Y., Hung, K.-C., Li, H.-K., Lin, K.-C.: Photodissociation of Propionaldehyde at 248 nm: roaming pathway as an increasingly important role in large Aliphatic Aldehydes. J. Phys. Chem. Lett. 5, 190–195 (2014)CrossRefGoogle Scholar
  42. 42.
    Nakamura, M., Tsai, P.-Y., Kasai, T., Lin, K.-C., Palazzetti, F., Lombardi, A., Aquilanti, V.: Dynamical, spectroscopic and computational imaging of bond breaking in photodissociation: roaming and role of conical intersections. Faraday Discuss. 177, 77–98 (2015)CrossRefGoogle Scholar
  43. 43.
    Bowman, J.M.: Roaming. Mol. Phys. 112, 2516–2528 (2014)CrossRefGoogle Scholar
  44. 44.
    Spezia, R., Martínez-Nuñez, E., Vazquez, S., Hase, W.L.: Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces. Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 375, 20170035 (2017)Google Scholar
  45. 45.
    Ma, X., Hase, W.L.: Perspective: chemical dynamics simulations of non-statistical reaction dynamics. Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 375, 20160204 (2017)Google Scholar
  46. 46.
    Hause, M.L., Herath, N., Zhu, R., Lin, M.C., Suits, A.G.: Roaming-mediated isomerization in the photodissociation of nitrobenzene. Nat. Chem. 3, 932–937 (2011)CrossRefGoogle Scholar
  47. 47.
    Herath, N., Suits, A.G.: Roaming radical reactions. J. Phys. Chem. Lett. 2, 642–647 (2011)CrossRefGoogle Scholar
  48. 48.
    Tsai, P.-Y., Chao, M.-H., Kasai, T., Lin, K.-C., Lombardi, A., Palazzetti, F., Aquilanti, V.: Roads leading to roam. Role of triple fragmentation and of conical intersections in photochemical reactions: experiments and theory on methyl formate. Phys. Chem. Chem. Phys. 16, 2854–2865 (2014)CrossRefGoogle Scholar
  49. 49.
    Lombardi, A., Palazzetti, F., Aquilanti, V., Li, H.-K., Tsai, P.-Y., Kasai, T., Lin, K.-C.: Rovibrationally excited molecules on the verge of a triple breakdown: molecular and roaming mechanisms in the photodecomposition of methyl formate. J. Phys. Chem. A 120, 5155–5162 (2016)CrossRefGoogle Scholar
  50. 50.
    Bonnet, L.: On the dynamical foundations of transition state theory: a semiclassical analysis. Ann. Phys. (N.Y.) 314, 99–118 (2004)CrossRefzbMATHGoogle Scholar
  51. 51.
    Rayez, J.-C., Bonnet, L., Larrégaray, P., Perrier, A.: Transition state theory: a reaction dynamics tool applied to gas-surface reactions. Mol. Sci. 3, A0029-1–A0029-10 (2009)CrossRefGoogle Scholar
  52. 52.
    Bonnet, L., Rayez, J.-C.: Dynamical derivation of Eyring equation and the second-order kinetic law. Int. J. Quantum Chem. 110, 2355–2359 (2010)Google Scholar
  53. 53.
    Tizniti, M., Le Picard, S.D., Lique, F., Berteloite, C., Canosa, A., Alexander, M.H., Sims, I.R.: The rate of the F + H2 reaction at very low temperatures. Nat. Chem. 6, 141–145 (2014)CrossRefGoogle Scholar
  54. 54.
    De Fazio, D., Aquilanti, V., Cavalli, S., Aguilar, A., Lucas, J.M.: Exact quantum calculations of the kinetic isotope effect: cross sections and rate constants for the F + HD reaction and role of tunneling. J. Chem. Phys. 125, 133109 (2006)CrossRefGoogle Scholar
  55. 55.
    Pomerantz, A.E., Camden, J.P., Chiou, A.S., Ausfelder, F., Chawla, N., Hase, W.L., Zare, R.N.: Reaction products with internal energy beyond the kinematic limit result from trajectories far from the minimum energy path: an example from H + HBr → H2 + Br. J. Am. Chem. Soc. 127, 16368–16369 (2005)CrossRefGoogle Scholar
  56. 56.
    Döntgen, M., Przybylski-Freund, M.-D., Kröger, L.C., Kopp, W.A., Ismail, A.E., Leonhard, K.: Automated discovery of reaction pathways, rate constants, and transition states using reactive molecular dynamics simulations. J. Chem. Theor. Comput. 11, 2517–2524 (2015)CrossRefGoogle Scholar
  57. 57.
    Fleming, K.L., Tiwary, P., Pfaendtner, J.: New approach for investigating reaction dynamics and rates with Ab initio calculations. J. Phys. Chem. A 120, 299–305 (2016)CrossRefGoogle Scholar
  58. 58.
    Fu, C.D., Oliveira, L.F.L., Pfaendtner, J.: Assessing generic collective variables for determining reaction rates in metadynamics simulations. J. Chem. Theor. Comput. 13, 968–973 (2017)CrossRefGoogle Scholar
  59. 59.
    Piccini, G., McCarty, J., Valsson, O., Parrinello, M.: Variational flooding study of a SN2 reaction. J. Phys. Chem. A 8, 580–583 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nayara D. Coutinho
    • 1
    Email author
  • Valter H. Carvalho-Silva
    • 2
  • Heibbe C. B. de Oliveira
    • 1
  • Vincenzo Aquilanti
    • 3
    • 4
  1. 1.Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Institute of ChemistryUniversity of BrasíliaBrasíliaBrazil
  2. 2.Grupo de Química Teórica e Estrutural de Anápolis, Ciências Exatas e TecnológicasUniversidade Estadual de GoiásAnápolisBrazil
  3. 3.Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaPerugiaItaly
  4. 4.Istituto di Struttura della Materia, Consiglio Nazionale delle RicercheRomeItaly

Personalised recommendations