Skip to main content

The \( {\mathbf{HI}}\,\varvec{ + }\,{\mathbf{OH}}\, \to \,{\mathbf{H}}_{{\mathbf{2}}} {\mathbf{O}}\, + \,{\mathbf{I}} \) Reaction by First-Principles Molecular Dynamics: Stereodirectional and anti-Arrhenius Kinetics

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10408))

Included in the following conference series:

Abstract

Exemplary of four-atom processes, the series of reactions between OH and HX to give \( {\text{H}}_{2} {\text{O}} + {\text{X}} \) (here X is a halogen atom) is one of the most studied theoretically and experimentally: the kinetics for X = Br and I manifests an unusual anti-Arrhenius behavior, namely a marked decrease of the rate constants as the temperature increases, and this has intrigued theoreticians for a long time. Motivation of the work reported in this paper is the continuation of the investigation of the stereodirectional dynamics of these reaction as the prominent reason for the peculiar kinetics, started in previous papers on X = Br. A first-principles Born-Oppenheimer ‘canonical’ molecular dynamics approach involves trajectories step-by-step generated on a potential energy surface quantum mechanically calculated on-the-fly, and thermostatically equilibrated in order to correspond to a specific temperature. Previous refinements of the method permitted a high number of trajectories at 50, 200, 350 and 500 K, for which the sampling of initial conditions allowed us to characterize the stereodynamical effect. It was confirmed also for X = I that the adjustment of the reactants’ mutual orientation in order to encounter the entrance into the ‘cone of acceptance’ is crucial for reactivity. The aperture angle of this cone is dictated by a range of directions of approach compatible with the formation of the specific HOH angle of the product water molecule; and consistently the adjustment is progressively less effective at higher the kinetic energy. Thermal rate constants from this molecular dynamics approach are discussed: provided that the systematic sampling of the canonical ensemble is adequate as in this case, quantitative comparison with the kinetic experiments is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Read, K.A., Mahajan, A.S., Carpenter, L.J., Evans, M.J., Faria, B.V.E., Heard, D.E., Hopkins, J.R., Lee, J.D., Moller, S.J., Lewis, A.C., Mendes, L., McQuaid, J.B., Oetjen, H., Saiz-Lopez, A., Pilling, M.J., Plane, J.M.C.: Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453, 1232–1235 (2008)

    Article  Google Scholar 

  2. Saiz-Lopez, A., von Glasow, R.: Reactive halogen chemistry in the troposphere. Chem. Soc. Rev. 41, 6448–6472 (2012)

    Article  Google Scholar 

  3. Zuo, J., Zhao, B., Guo, H., Xie, D.: A global coupled cluster potential energy surface for HCl + OH ↔ Cl + H2O. Phys. Chem. Chem. Phys. 120, 3433–3440 (2016)

    Google Scholar 

  4. Zuo, J., Zhao, B., Guo, H., Xie, D.: A global coupled cluster potential energy surface for HCl + OH ↔ Cl + H2O. Phys. Chem. Chem. Phys. 19, 9770–9777 (2017)

    Article  Google Scholar 

  5. Ravishankara, A.R., Wine, P.H., Wells, J.R.: The OH + HBr reaction revisited. J. Chem. Phys. 83, 447–448 (1985)

    Article  Google Scholar 

  6. Sims, I.R., Smith, I.W.M., Clary, D.C., Bocherel, P., Rowe, B.R.: Ultra-low temperature kinetics of neutral-neutral reactions - new experimental and theoretical results for OH + HBr between 295 K and 23 K. J. Chem. Phys. 101, 1748–1751 (1994)

    Article  Google Scholar 

  7. Atkinson, D.B., Jaramillo, V.I., Smith, M.A.: Low-temperature kinetic behavior of the bimolecular reaction OH + HBr (76−242 K). J. Phys. Chem. A 101, 3356–3359 (1997)

    Article  Google Scholar 

  8. Bedjanian, Y., Riffault, V., Le Bras, G., Poulet, G.: Kinetic study of the reactions of OH and OD with HBr and DBr. J. Photochem. Photobiol. A Chem. 128, 15–25 (1999)

    Article  Google Scholar 

  9. Jaramillo, V.I., Smith, M.A.: Temperature-dependent kinetic isotope effects in the gas-phase reaction: OH + HBr. J. Phys. Chem. A 105, 5854–5859 (2001)

    Article  Google Scholar 

  10. Mullen, C., Smith, M.A.: Temperature dependence and kinetic isotope effects for the OH + HBr reaction and H/D isotopic variants at low temperatures (53–135 K) measured using a pulsed supersonic Laval nozzle flow reactor. J. Phys. Chem. A 109, 3893–3902 (2005)

    Article  Google Scholar 

  11. Jaramillo, V.I., Gougeon, S., Le Picard, S.D., Canosa, A., Smith, M.A., Rowe, B.R.: A consensus view of the temperature dependence of the gas phase reaction: OH + HBr → H2O + Br. Int. J. Chem. Kinet. 34, 339–344 (2002)

    Article  Google Scholar 

  12. Takacs, G.A., Glass, G.P.: Reactions of hydroxyl radicals with some hydrogen halides. J. Phys. Chem. 77, 1948–1951 (1973)

    Article  Google Scholar 

  13. Leod, H. M., Balestra, C., Jourdain, J.L., Laverdet, G., Le Bras, G.: Kinetic study of the reaction OH + HI by laser photolysis-resonance fluorescence. Int. J. Chem. Kinet. 22, 1167–1176 (1990)

    Article  Google Scholar 

  14. Lancar, I.T., Mellouki, A., Poulet, G.: Kinetics of the reactions of hydrogen iodide with hydroxyl and nitrate radicals. Chem. Phys. Lett. 177, 554–558 (1991)

    Article  Google Scholar 

  15. Butkovskaya, N.I., Setser, D.W.: Dynamics of OH and OD radical reactions with HI and GeH4 studied by infrared chemiluminescence of the H2O and HDO products. J. Chem. Phys. 106, 5028–5042 (1997)

    Article  Google Scholar 

  16. Campuzano-Jost, P., Crowley, J.N.: Kinetics of the reaction of OH with HI between 246 and 353 K. J. Phys. Chem. A 103, 2712–2719 (1999)

    Article  Google Scholar 

  17. Coutinho, N.D., Silva, V.H.C., de Oliveira, H.C.B., Camargo, A.J., Mundim, K.C., Aquilanti, V.: Stereodynamical origin of anti-arrhenius kinetics: negative activation energy and roaming for a four-atom reaction. J. Phys. Chem. Lett. 6, 1553–1558 (2015)

    Article  Google Scholar 

  18. Coutinho, N.D., Aquilanti, V., Silva, V.H.C., Camargo, A.J., Mundim, K.C., de Oliveira, H.C.B.: Stereodirectional origin of anti-arrhenius kinetics for a tetraatomic Hydrogen exchange reaction: Born-Oppenheimer molecular dynamics for OH + HBr. J. Phys. Chem. A 120, 5408–5417 (2016)

    Article  Google Scholar 

  19. Silva, V.H.C., Aquilanti, V., de Oliveira, H.C.B., Mundim, K.C.: Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution. Chem. Phys. Lett. 590, 201–207 (2013)

    Article  Google Scholar 

  20. Carvalho-Silva, V.H., Aquilanti, V., de Oliveira, H.C.B., Mundim, K.C.: Deformed transition-state theory: deviation from arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime. J. Comput. Chem. 38, 178–188 (2017)

    Article  Google Scholar 

  21. Cavalli, S., Aquilanti, V., Mundim, K.C., De Fazio, D.: Theoretical reaction kinetics astride the transition between moderate and deep tunneling regimes: the F + HD case. J. Phys. Chem. A 118, 6632–6641 (2014)

    Article  Google Scholar 

  22. Aquilanti, V., Mundim, K.C., Elango, M., Kleijn, S., Kasai, T.: Temperature dependence of chemical and biophysical rate processes: phenomenological approach to deviations from Arrhenius law. Chem. Phys. Lett. 498, 209–213 (2010)

    Article  Google Scholar 

  23. Aquilanti, V., Mundim, K.C., Cavalli, S., De Fazio, D., Aguilar, A., Lucas, J.M.: Exact activation energies and phenomenological description of quantum tunneling for model potential energy surfaces. The F + H2 reaction at low temperature. Chem. Phys. 398, 186–191 (2012)

    Article  Google Scholar 

  24. Aquilanti, V., Coutinho, N.D., Carvalho-Silva, V.H.: Kinetics of low-temperature transitions and reaction rate theory from non-equilibrium distributions. Philos. Trans. R. Soc. London A 375, 20160204 (2017)

    Article  Google Scholar 

  25. Moise, A., Parker, D.H., Ter Meulen, J.J.: State-to-state inelastic scattering of OH by HI: A comparison with OH-HCI and OH-HBr. J. Chem. Phys. 126, 124302 (2007)

    Article  Google Scholar 

  26. Canneaux, S., Xerri, B., Louis, F., Cantrel, L.: Theoretical study of the gas-phase reactions of Iodine atoms (2P3/2) with H2, H2O, HI, and OH. J. Phys. Chem. A 114, 9270–9288 (2010)

    Article  Google Scholar 

  27. Hao, Y., Gu, J., Guo, Y., Zhang, M., Xie, Y., Schaefer III, H.F.: Spin-orbit corrected potential energy surface features for the I (2P3/2) + H2O → HI + OH forward and reverse reactions. Phys. Chem. Chem. Phys. 16, 2641–2646 (2014)

    Article  Google Scholar 

  28. Marx, D., Hutter, J.: Ab initio molecular dynamics: theory and implementation. Mod. Methods Algorithms Quantum Chem. 1, 301–449 (2000)

    Google Scholar 

  29. Paranjothy, M., Sun, R., Zhuang, Y., Hase, W.L.: Direct chemical dynamics simulations: coupling of classical and quasiclassical trajectories with electronic structure theory. WIRE Comput. Mol. Sci. 3, 296–316 (2013)

    Article  Google Scholar 

  30. Marx, D., Hutter, J.: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  31. Wang, L.-P., Titov, A., McGibbon, R., Liu, F., Pande, V.S., Martínez, T.J.: Discovering chemistry with an ab initio nanoreactor. Nat. Chem. 6, 1044–1048 (2014)

    Article  Google Scholar 

  32. Martyna, G.J., Klein, M.L., Tuckerman, M.: Nose-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992)

    Article  Google Scholar 

  33. de Oliveira-Filho, A.G.S., Ornellas, F.R., Bowman, J.M.: Quasiclassical trajectory calculations of the rate constant of the OH + HBr → Br + H2O reaction using a full-dimensional Ab initio potential energy surface over the temperature range 5 to 500 K. J. Phys. Chem. Lett. 5, 706–712 (2014)

    Article  Google Scholar 

  34. de Oliveira-Filho, A.G.S., Ornellas, F.R., Bowman, J.M.: Energy disposal and thermal rate constants for the OH + HBr and OH + DBr reactions: quasiclassical trajectory calculations on an accurate potential energy surface. J. Phys. Chem. A 118, 12080–12088 (2014)

    Article  Google Scholar 

  35. Tsai, P.-Y., Che, D.-C., Nakamura, M., Lin, K.-C., Kasai, T.: Orientation dependence in the four-atom reaction of OH + HBr using the single-state oriented OH radical beam. Phys. Chem. Chem. Phys. 12, 2532–2534 (2010)

    Article  Google Scholar 

  36. Tsai, P.-Y., Che, D.-C., Nakamura, M., Lin, K.-C., Kasai, T.: Orientation dependence for Br formation in the reaction of oriented OH radical with HBr molecule. Phys. Chem. Chem. Phys. 13, 1419–1423 (2011)

    Article  Google Scholar 

  37. Kasai, T., Che, D.-C., Okada, M., Tsai, P.-Y., Lin, K.-C., Palazzetti, F., Aquilanti, V.: Directions of chemical change: experimental characterization of the stereodynamics of photodissociation and reactive processes. Phys. Chem. Chem. Phys. 16, 9776–9790 (2014)

    Article  Google Scholar 

  38. Frank, I., Parrinello, M., Klamt, A.: Insight into chemical reactions from first-principles simulations: the mechanism of the gas-phase reaction of OH radicals with Ketones. J. Phys. Chem. A 102, 3614–3617 (1998)

    Article  Google Scholar 

  39. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  40. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

    Article  Google Scholar 

  41. Tsai, P.-Y., Hung, K.-C., Li, H.-K., Lin, K.-C.: Photodissociation of Propionaldehyde at 248 nm: roaming pathway as an increasingly important role in large Aliphatic Aldehydes. J. Phys. Chem. Lett. 5, 190–195 (2014)

    Article  Google Scholar 

  42. Nakamura, M., Tsai, P.-Y., Kasai, T., Lin, K.-C., Palazzetti, F., Lombardi, A., Aquilanti, V.: Dynamical, spectroscopic and computational imaging of bond breaking in photodissociation: roaming and role of conical intersections. Faraday Discuss. 177, 77–98 (2015)

    Article  Google Scholar 

  43. Bowman, J.M.: Roaming. Mol. Phys. 112, 2516–2528 (2014)

    Article  Google Scholar 

  44. Spezia, R., Martínez-Nuñez, E., Vazquez, S., Hase, W.L.: Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces. Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 375, 20170035 (2017)

    Google Scholar 

  45. Ma, X., Hase, W.L.: Perspective: chemical dynamics simulations of non-statistical reaction dynamics. Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 375, 20160204 (2017)

    Google Scholar 

  46. Hause, M.L., Herath, N., Zhu, R., Lin, M.C., Suits, A.G.: Roaming-mediated isomerization in the photodissociation of nitrobenzene. Nat. Chem. 3, 932–937 (2011)

    Article  Google Scholar 

  47. Herath, N., Suits, A.G.: Roaming radical reactions. J. Phys. Chem. Lett. 2, 642–647 (2011)

    Article  Google Scholar 

  48. Tsai, P.-Y., Chao, M.-H., Kasai, T., Lin, K.-C., Lombardi, A., Palazzetti, F., Aquilanti, V.: Roads leading to roam. Role of triple fragmentation and of conical intersections in photochemical reactions: experiments and theory on methyl formate. Phys. Chem. Chem. Phys. 16, 2854–2865 (2014)

    Article  Google Scholar 

  49. Lombardi, A., Palazzetti, F., Aquilanti, V., Li, H.-K., Tsai, P.-Y., Kasai, T., Lin, K.-C.: Rovibrationally excited molecules on the verge of a triple breakdown: molecular and roaming mechanisms in the photodecomposition of methyl formate. J. Phys. Chem. A 120, 5155–5162 (2016)

    Article  Google Scholar 

  50. Bonnet, L.: On the dynamical foundations of transition state theory: a semiclassical analysis. Ann. Phys. (N.Y.) 314, 99–118 (2004)

    Article  MATH  Google Scholar 

  51. Rayez, J.-C., Bonnet, L., Larrégaray, P., Perrier, A.: Transition state theory: a reaction dynamics tool applied to gas-surface reactions. Mol. Sci. 3, A0029-1–A0029-10 (2009)

    Article  Google Scholar 

  52. Bonnet, L., Rayez, J.-C.: Dynamical derivation of Eyring equation and the second-order kinetic law. Int. J. Quantum Chem. 110, 2355–2359 (2010)

    Google Scholar 

  53. Tizniti, M., Le Picard, S.D., Lique, F., Berteloite, C., Canosa, A., Alexander, M.H., Sims, I.R.: The rate of the F + H2 reaction at very low temperatures. Nat. Chem. 6, 141–145 (2014)

    Article  Google Scholar 

  54. De Fazio, D., Aquilanti, V., Cavalli, S., Aguilar, A., Lucas, J.M.: Exact quantum calculations of the kinetic isotope effect: cross sections and rate constants for the F + HD reaction and role of tunneling. J. Chem. Phys. 125, 133109 (2006)

    Article  Google Scholar 

  55. Pomerantz, A.E., Camden, J.P., Chiou, A.S., Ausfelder, F., Chawla, N., Hase, W.L., Zare, R.N.: Reaction products with internal energy beyond the kinematic limit result from trajectories far from the minimum energy path: an example from H + HBr → H2 + Br. J. Am. Chem. Soc. 127, 16368–16369 (2005)

    Article  Google Scholar 

  56. Döntgen, M., Przybylski-Freund, M.-D., Kröger, L.C., Kopp, W.A., Ismail, A.E., Leonhard, K.: Automated discovery of reaction pathways, rate constants, and transition states using reactive molecular dynamics simulations. J. Chem. Theor. Comput. 11, 2517–2524 (2015)

    Article  Google Scholar 

  57. Fleming, K.L., Tiwary, P., Pfaendtner, J.: New approach for investigating reaction dynamics and rates with Ab initio calculations. J. Phys. Chem. A 120, 299–305 (2016)

    Article  Google Scholar 

  58. Fu, C.D., Oliveira, L.F.L., Pfaendtner, J.: Assessing generic collective variables for determining reaction rates in metadynamics simulations. J. Chem. Theor. Comput. 13, 968–973 (2017)

    Article  Google Scholar 

  59. Piccini, G., McCarty, J., Valsson, O., Parrinello, M.: Variational flooding study of a SN2 reaction. J. Phys. Chem. A 8, 580–583 (2017)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge grants from Brazilian CAPES, FAPEG, FAPDF, CNPQ and FINATEC. V. H. Carvalho-Silva thanks PrP/UEG for research funding through PROBIP and PRO-PROJETOS programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayara D. Coutinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Coutinho, N.D., Carvalho-Silva, V.H., de Oliveira, H.C.B., Aquilanti, V. (2017). The \( {\mathbf{HI}}\,\varvec{ + }\,{\mathbf{OH}}\, \to \,{\mathbf{H}}_{{\mathbf{2}}} {\mathbf{O}}\, + \,{\mathbf{I}} \) Reaction by First-Principles Molecular Dynamics: Stereodirectional and anti-Arrhenius Kinetics. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10408. Springer, Cham. https://doi.org/10.1007/978-3-319-62404-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62404-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62403-7

  • Online ISBN: 978-3-319-62404-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics