Influence of the Intermolecular Potential Energy on N\(_2\)-N\(_2\) Inelastic Collisions: A Quantum-Classical Study

  • Simone Fioccola
  • Fernando Pirani
  • Massimiliano Bartolomei
  • Cecilia ColettiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10408)


The study of internal energy transfer processes in N\(_2\)-N\(_2\) collisions has found a renewed interest over the last years, in connection with the role such events play in a wide range of temperature regimes, in atmospheric chemistry and physics and in the development of plasma and aerospace technologies. One of the most efficient approaches to calculate vibration to vibration (VV) energy transfer relies on a quantum-classical method, which couples a rigorous quantum mechanical treatment of the vibrations and a quasiclassical description of the other degrees of freedom, allowing for the calculation of energy exchange probabilities for a large body of state selected processes at a reasonable computational cost. The accuracy of the results however depends on the ability of the potential energy surface to correctly describe both long and short range interactions which dominate the outcome of the collisions at different temperatures. In this work we examine the effect of using alternative potential energy surfaces, differing either for the value of the employed parameters and for their formulation, on VV cross sections and rate constants.


Inelastic scattering VV energy transfer Quantum-classical methods 


  1. 1.
    Billing, G.D.: Vibration-vibration and vibration-translation energy transfer, including multiquantum transitions in atom-diatom and diatom-diatom collisions. In: Capitelli, M. (ed.) Nonequilibrium Vibrational Kinetics. Topics of Current Physics, vol. 39, pp. 85–112. Springer, Berlin (1986). doi: 10.1007/978-3-642-48615-9_4 CrossRefGoogle Scholar
  2. 2.
    Coletti, C., Billing, G.D.: Quantum-classical calculation of cross sections and rate constants for the H\(_2\)+CN \(\rightarrow \) HCN+H reaction. J. Chem. Phys. 113, 11101–11108 (2000)CrossRefGoogle Scholar
  3. 3.
    Coletti, C., Billing, G.D.: Quantum dressed classical mechanics: application to chemical reactions. Chem. Phys. Lett. 342, 65–74 (2001)CrossRefGoogle Scholar
  4. 4.
    Martí, C., Pacifici, L., Laganà, A., Coletti, C.: A quantum-classical study of the OH + H\(_2\) reactive and inelastic collisions. Chem. Phys. Lett. 674, 103–108 (2017)CrossRefGoogle Scholar
  5. 5.
    Coletti, C., Billing, G.D.: Quantum dressed classical mechanics: application to the photo-absorption of pyrazine. Chem. Phys. Lett. 368, 289–298 (2003)CrossRefGoogle Scholar
  6. 6.
    Billing, G.D., Coletti, C., Kurnosov, A.K., Napartovich, A.P.: Sensitivity of molecular vibrational dynamics to energy exchange rate constants. J. Phys. B: At. Mol. Opt. Phys. 36, 1175–1192 (2003)CrossRefGoogle Scholar
  7. 7.
    Park, C.: Nonequilibrium Hypersonic Aerothermodynamics. Wiley, New York (1989)Google Scholar
  8. 8.
    Billing, G.D., Fisher, E.R.: VV and VT rate coefficients in N\(_2\) by a quantum-classical model. Chem. Phys. 43, 395–401 (1979)CrossRefGoogle Scholar
  9. 9.
    Pirani, F., Brizi, S., Roncaratti, L.F., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the Lennard-Jones Model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10, 5489–5503 (2008)CrossRefGoogle Scholar
  10. 10.
    Kurnosov, A., Cacciatore, M., Laganà, A., Pirani, F., Bartolomei, M., Garcia, E.: The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N\(_2\)-N\(_2\) collisions. J. Comput. Chem. 35, 722–736 (2014)CrossRefGoogle Scholar
  11. 11.
    Martínez, R.Z., Bermejo, D.: Experimental determination of the rate of VV collisional relaxation in \(^{14}N_2\) in its ground (X\(^1\Sigma _g^+\)) electronic state between 77 and 300 K. Phys. Chem. Chem. Phys. 17, 12661–12672 (2015)CrossRefGoogle Scholar
  12. 12.
    Paukku, Y., Yang, K.R., Varga, Z., Truhlar, D.G.: Global ab initio ground-state potential energy surface of N\(_4\). J. Chem. Phys. 139, 044309 (2013)CrossRefGoogle Scholar
  13. 13.
    Bender, J.D., Doraiswarmy, S., Truhlar, D.G., Candler, G.V.: Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: method and application to N\(_4\). J. Chem. Phys. 140, 054302 (2014)CrossRefGoogle Scholar
  14. 14.
    Bender, J.D., Valentini, P., Nompelis, I., Paukku, Y., Varga, Z., Truhlar, D.G., Schwartzentruber, T., Candler, G.V.: An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N\(_2\)+N\(_2\) dissociation reactions. J. Chem. Phys. 143, 054304 (2015)CrossRefGoogle Scholar
  15. 15.
    Billing, G.D.: Rate constants and cross sections for vibrational transitions in atom-diatom and diatom-diatom collisions. Comp. Phys. Comm. 32, 45–62 (1984)CrossRefGoogle Scholar
  16. 16.
    Billing, G.D.: Rate constants for vibrational transitions in diatom-diatom collisions. Comput. Phys. Comm. 44, 121–136 (1987)CrossRefGoogle Scholar
  17. 17.
    Cappelletti, D., Pirani, F., Bussery-Honvault, B., Gómez, L., Bartolomei, M.: A bond-bond description of the intermolecular interaction energy: the case of weakly bound N\(_2\)-H\(_2\) and N\(_2\)-N\(_2\) complexes. Phys. Chem. Chem. Phys. 10, 4281–4293 (2008)CrossRefGoogle Scholar
  18. 18.
    Coletti, C., Billing, G.D.: Isotopic effects on vibrational energy transfer in CO. J. Chem. Phys. 111, 3891–3897 (1999)CrossRefGoogle Scholar
  19. 19.
    Coletti, C., Billing, G.D.: Rate constants for energy transfer in carbon monoxyde. J. Chem. Phys. 113, 4869–4875 (2000)CrossRefGoogle Scholar
  20. 20.
    Coletti, C., Billing, G.D.: Vibrational energy transfer in molecular oxygen collisions. Chem. Phys. Lett. 356, 14–22 (2002)CrossRefGoogle Scholar
  21. 21.
    Billing, G.D.: The semiclassical treatment of molecular roto/vibrational energy transfer. Comput. Phys. Rept. 1, 239–296 (1984)CrossRefGoogle Scholar
  22. 22.
    Cacciatore, M., Kurnosov, A., Napartovich, A.: Vibrational energy transfer in N\(_2\) N\(_2\) collisions: a new semiclassical study. J. Chem. Phys. 123, 174315 (2005)CrossRefGoogle Scholar
  23. 23.
    Aquilanti, V., Bartolomei, M., Cappelletti, D., Carmona-Novillo, E., Pirani, F.: Dimers of the major components of the atmosphere: realistic potential energy surfaces and quantum mechanical prediction of spectral features. Phys. Chem. Chem. Phys. 3, 3891–3894 (2001)CrossRefGoogle Scholar
  24. 24.
    Lombardi, A., Pirani, F., Laganà, A., Bartolomei, M.: Energy transfer dynamics and kinetics of elementary processes (Promoted) by gas-phase CO\(_2\)-N\(_2\) collisions: selectivity control by the anisotropy of the interaction. J. Comput. Chem. 37, 1463–1475 (2016)CrossRefGoogle Scholar
  25. 25.
    Maroulis, G.: Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N\(_2\). J. Chem. Phys. 118, 2673–2687 (2003)CrossRefGoogle Scholar
  26. 26.
    Bartolomei, M., Carmona-Novillo, E., Hernández, M.I., Campos Martínez, J., Hernández-Lamoneda, R.: Long-range interaction for dimers of atmospheric interest: dispersion, induction and electrostatic contributions for O\(_2\)-O\(_2\), N\(_2\)-N\(_2\) and O\(_2\)-N\(_2\). J. Comput. Chem. 32, 279–290 (2011)CrossRefGoogle Scholar
  27. 27.
    Garcia, E., Laganà, A., Pirani, F., Bartolomei, M., Cacciatore, M., Kurnosov, A.: Enhanced flexibility of the O\(_2\) + N\(_2\) interaction and its effect on collisional vibrational energy exchange. J. Phys. Chem. A 120, 5208–5219 (2016)CrossRefGoogle Scholar
  28. 28.
    Akishev, Y.S., Demyanov, A.V., Kochetov, I.V., Napartovich, A.P., Pashkin, S.V., Ponomarenko, V.V., Pevgov, V.G., Podobedov, V.B.: Determination of vibrational exchange constants in N\(_2\) from heating of gas. High Temp. 20, 658 (1982)Google Scholar
  29. 29.
    Valyanskii, S.I., Vereshchagin, K.A., Volkov, A.Y., Pashinin, P.P., Smirnov, V.V., Fabelinskii, V.I., Holz, L.: Determination of the rate constant for vibrational-vibrational exchange in nitrogen under biharmonic excitation conditions. Sov. J. Quantum Electron. 14, 1229 (1984)CrossRefGoogle Scholar
  30. 30.
    Ahn, T., Adamovich, I.V., Lempert, W.R.: Determination of nitrogen VV transfer rates by stimulated Raman pumping. Chem. Phys. 298, 233–240 (2004)CrossRefGoogle Scholar
  31. 31.
    Carmona-Novillo, E., Pirani, F., Aquilanti, V.: Quantum dynamics of clusters on experimental potential energy surfaces: triplet and quintet O\(_2\)-O\(_2\) surfaces and dimers of para-N\(_2\) with ortho- and para-N\(_2\) and with O\(_2\). Int. J. Quantum Chem. 99, 616–627 (2004)CrossRefGoogle Scholar
  32. 32.
    Aquilanti, V., Bartolomei, M., Cappelletti, D., Carmona-Novillo, E., Pirani, F.: The N\(_2\)-N\(_2\) system: an experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer. J. Chem. Phys. 117, 615–627 (2002)CrossRefGoogle Scholar
  33. 33.
    Guillon, G., Rajagopala Rao, T., Mahapatra, S., Honvault, P.: Quantum dynamics of the \(^{18}\)O + \(^{32}\)O\(_2\) collision process. J. Phys. Chem. A 119, 12512–12516 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Simone Fioccola
    • 1
  • Fernando Pirani
    • 2
  • Massimiliano Bartolomei
    • 3
  • Cecilia Coletti
    • 1
    Email author
  1. 1.Dipartimento di FarmaciaUniversità G. d’AnnunzioChietiItaly
  2. 2.Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaPerugiaItaly
  3. 3.Instituto de Física FundamentalMadridSpain

Personalised recommendations