The Astrochemical Observatory: Experimental and Computational Focus on the Chiral Molecule Propylene Oxide as a Case Study

  • Andrea LombardiEmail author
  • Federico Palazzetti
  • Vincenzo Aquilanti
  • Fernando Pirani
  • Piergiorgio Casavecchia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10408)


The recent observation of propylene oxide in the interstellar medium has raised unusually large interest in view of the prototypical role that this molecule plays in chemical and biophysical investigations of chirality, a phenomenon that transversely pervades modern science for implications ranging from the mechanism of the origin and early evolution of life (homochirality) to key aspects of industrial and pharmaceutical chemistry, such as asymmetric synthesis. Here we present a survey of recent advances, designing and illustrating a number of possible experiments for the demonstration of chiral effects in the dynamics of the intermolecular interactions, suggesting a scenario for a stereo-directional origin of chiral discrimination.


Scattering experiments Chirality Molecular dynamics Molecular beams Propylene oxide 



The authors acknowledge financial support from MIUR PRIN 2010–2011 (contract 2010ERFKXL\(\_\)002) and from “Fondazione Cassa Risparmio Perugia (Codice Progetto: 2015.0331.021 Ricerca Scientifica e Tecnologica)”. They also acknowledge the Italian Ministry for Education, University and Research, MIUR, for financial supporting through SIR 2014 “Scientific Independence for young Researchers” (RBSI14U3VF). Thanks are due to the Dipartimento di Chimica, Biologia e Biotecnologie dell’Università di Perugia (FRB, Fondo per la Ricerca di Base). A. L., P. C., and F. P. acknowledge financial support from MIUR PRIN 2015 (contract 2015F59J3R\(\_\)002). V.A. thanks Brazilian CAPES for grant as Distinguished Visiting Professor at Universidade da Bahia.


  1. 1.
    Palazzetti, F., Maciel, G.S., Lombardi, A., Grossi, G., Aquilanti, V.: The astrochemical observatory: molecules in the laboratory and in the cosmos. J. Chin. Chem. Soc. 59, 1045–1052 (2012)CrossRefGoogle Scholar
  2. 2.
    Pizzarello, S., Groy, T.L.: Molecular asymmetry in extraterrestrial organic chemistry: an analytical perspective. Geochim. Cosmochim. Acta 75, 645–656 (2011)CrossRefGoogle Scholar
  3. 3.
    McGuire, B., Carroll, P.B., Loomis, R.A., Finneran, I.A., Jewell, P.A., Remijan, A.J., Blake, G.A.: Discovery of the interstellar chiral molecule propyleneoxide (ch\(_3\)chch\(_2\)o). Science 352, 1449–1452 (2016)CrossRefGoogle Scholar
  4. 4.
    Aquilanti, V.: Molecular alignment in gaseous expansions and anisotropy of intermolecular forces. Am. Inst. Phys. 762, 26–31 (2005)Google Scholar
  5. 5.
    Aquilanti, V., Bartolomei, M., Pirani, F., Cappelletti, D., Vecchiocattivi, F., Shimizu, Y., Kasai, T.: Orienting and aligning molecules for stereochemistry and photodynamics. Phys. Chem. Chem. Phys. 5, 291–300 (2005)CrossRefGoogle Scholar
  6. 6.
    Che, D.C., Kanda, K., Palazzetti, F., Aquilanti, V., Kasai, T.: Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide: rotational and orientational distributions. Chem. Phys. 399, 180–192 (2012)CrossRefGoogle Scholar
  7. 7.
    Barron, L.D.: True and false chirality and absolute asymmetric synthesis. J. Am. Chem. Soc. 108, 5539–5542 (1986)CrossRefGoogle Scholar
  8. 8.
    Quack, M.: How important is parity violation for molecular and biomolecular chirality. Angew. Chem. Int. Ed. 41, 4618–4630 (2002)CrossRefGoogle Scholar
  9. 9.
    Rikken, G.L.J.A., Raupach, E.: Enantioselective magnetochiral photochemistry. Nature 405, 932–935 (2000)CrossRefGoogle Scholar
  10. 10.
    Avalos, A., Babiano, R., Cintas, P., Jiménez, J.L., Palacios, J.C.: Absolute asymmetric synthesis under physical fields: facts and fictions. Chem. Rev. 98, 2391–2404 (1998)CrossRefGoogle Scholar
  11. 11.
    Modica, P., Meinert, C., DeMarcellus, P., Nahon, L., Meierhenrich, U.J., Sergeant D’Hendecourt, L.L.: Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: a possible source of asymmetry for prebiotic chemistry. Astrophys. J. 788, 79 (2014)CrossRefGoogle Scholar
  12. 12.
    Aquilanti, V., Schettino, V., Zerbi, G.: Introduction: astrochemistry-molecules in space and in time. Rend. Fis. Acc. Lincei 22, 67–68 (2011)CrossRefGoogle Scholar
  13. 13.
    Bacchus-Montabonel, M.C.: Radiative and collisional processes in space chemistry. Rend. Fis. Acc. Lincei 22, 95–103 (2011)CrossRefGoogle Scholar
  14. 14.
    Aquilanti, V., Maciel, G.S.: Observed molecular alignment in gaseous streams and possible chiral effects in vortices and surface scattering. Orig. Life Evol. Biosph. 36, 435–441 (2006)CrossRefGoogle Scholar
  15. 15.
    Musigmann, M., Busalla, A., Blum, K., Thompson, D.G.: Enantio-selective collisions between unpolarized electrons and chiral molecules. J. Phys. Chem. B 34, L79–L85 (2001)Google Scholar
  16. 16.
    Barron, L.D.: True, false chirality, absolute enantioselection. Rend. Fis. Acc. Lincei 24, 179–189 (2013)Google Scholar
  17. 17.
    Longo, S., Coppola, C.: Stochastic models of chiral symmetry breaking in autocatalytic networks with anomalous fluctuations. Rend. Fis. Acc. Lincei 24, 277–281 (2013)CrossRefGoogle Scholar
  18. 18.
    Ribó, J.M., El-Hachema, I.Z., Crusatz, J.: Effect of flows in auto-organization, self-assembly, and emergence of chirality. Rend. Fis. Acc. Lincei 24, 197–211 (2013)Google Scholar
  19. 19.
    Ribó, J.M., Crusatz, J., Sagués, F., Claret, J., Rubires, R.: Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 2063–2066 (2001)CrossRefGoogle Scholar
  20. 20.
    Matteson, D.S., Ribó, J.M., Crusatz, J., Sagués, F., Claret, J., Rubires, R.: Chiral selection when stirred, not shaken. Science 293, 1435 (2001)CrossRefGoogle Scholar
  21. 21.
    Lee, H.N., Su, T.M., Chao, I.: Rotamer dynamics of substituted simple alkanes. 1. a classical trajectory study of collisional orientation and alignment of 1-bromo-2-chloroethane. J. Phys. Chem. A 108, 2567–2575 (2004)CrossRefGoogle Scholar
  22. 22.
    Lee, H.N., Chang, L.C., Su, T.M.: Optical rotamers of substituted simple alkanes induced by macroscopic translation-rotational motions. Chem. Phys. Lett. 507, 63–68 (2011)CrossRefGoogle Scholar
  23. 23.
    Lee, H.N., Chao, I., Su, T.M.: Asymmetry in the internal energies of the optical rotamers of 1-bromo-2-chloroethane in oriented-molecule/surface scattering: a classical molecular. Chem. Phys. Lett. i517, 132–138 (2011)CrossRefGoogle Scholar
  24. 24.
    Aquilanti, V., Ascenzi, D., Cappelletti, D., Pirani, F.: Velocity dependence of collisional alignment of oxygen molecules in gaseous expansions. Nature 371, 399–402 (1994)CrossRefGoogle Scholar
  25. 25.
    Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: Aligned molecular collisions and a stereodynamical mechanism for selective chirality. Rend. Fis. Acc. Lincei 22, 125–135 (2011)CrossRefGoogle Scholar
  26. 26.
    Al Rabaa, A., Le Barbu, K., Lahmani, F., Zehnacker-Rentien, A.: van der waals complexes between chiral molecules in a supersonic jet: a new spectroscopic method for enantiomeric discrimination. J. Phys. Chem. A 101, 17126–17131 (1997)CrossRefGoogle Scholar
  27. 27.
    Le Barbu, K., Brenner, V., Milliè, P., Lahmani, F., Zehnacker-Rentien, A.: An experimental and theoretical study of jet-cooled complexes of chiral molecules: the role of dispersive forces in chiral discrimination. J. Phys. Chem. A 102, 128–137 (1998)CrossRefGoogle Scholar
  28. 28.
    Latini, A., Toja, D., Giardini-Guidoni, A., Piccirillo, S., Speranza, M.: Energetics of molecular complexes in a supersonic beam: a novel spectroscopic tool for enantiomeric discrimination. Angew. Chem. Int. Ed. 38, 815–817 (1998)CrossRefGoogle Scholar
  29. 29.
    Su, Z., Borho, N., Yunjie, X.: Chiral self recognition: direct spectroscopic detection of the homochiral and heterochiral dimers of propylene oxide in the gas phase. J. Am. Chem. Soc. 128, 17131–17126 (2006)Google Scholar
  30. 30.
    Turchini, S., Zena, N., Contini, G., Alberti, G., Alagia, M., Stranges, S., Fronzono, G., Stener, M., Decleva, P., Prosperi, T.: Circular dichroism in photoelectron spectroscopy of free chiral molecules: experiment and theory on methyl-oxirane. Phys. Rev. A 70, 014502 (2004)CrossRefGoogle Scholar
  31. 31.
    Merten, C., Bloino, J., Barone, V., Yunjie, X.: Anharmonicity effects in the vibrational cd spectra of propylene oxide. J. Phys. Chem. Lett. 4, 3424–3428 (2013)CrossRefGoogle Scholar
  32. 32.
    Stranges, S., Turchini, S., Alagia, M., Alberti, G., Contini, G., Decleva, P., Fronzoni, G., Stener, M.: Valence photoionization dynamics in circular dichroism of chiral free molecules: the methyl-oxirane. J. Chem. Phys. 122, 244303 (2005)CrossRefGoogle Scholar
  33. 33.
    Elango, M., Maciel, G.S., Palazzetti, F., Lombardi, A., Aquilanti, V.: Quantum chemistry of C\(_3\)H\(_6\)O molecules: structure and stability, isomerization pathways, and chirality changing mechanisms. J. Phys. Chem. A 114(36), 9864–9874 (2010)CrossRefGoogle Scholar
  34. 34.
    Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: The origin of chiral discrimination: supersonic molecular beam experiments and molecular dynamics simulations of collisional mechanisms. Phys. Scripta 78, 058119 (2008)CrossRefGoogle Scholar
  35. 35.
    Busalla, A., Blum, K., Thompson, D.G.: Differential cross section for collisions between electrons and oriented chiral molecules. Phys. Rev. Lett. 85, 1562 (1999)CrossRefGoogle Scholar
  36. 36.
    Barreto, P.R.P., Vilela, A.F.A., Lombardi, A., Maciel, G.S., Palazzetti, F., Aquilanti, V.: The hydrogen peroxide-rare gas systems: quantum chemical calculations and hyperspherical harmonic representation of the potential energy surface for atom-floppy molecule interactions. J. Phys. Chem. A 111, 12754–12762 (2007)CrossRefGoogle Scholar
  37. 37.
    Maciel, G.S., Barreto, P.R.P., Palazzetti, F., Lombardi, A., Aquilanti, V.: A quantum chemical study of h\(_2\)s\(_2\): intramolecular torsional mode and intermolecular interactions with rare gases. J. Phys. Chem. A 129, 164302 (2008)CrossRefGoogle Scholar
  38. 38.
    Lombardi, A., Palazzetti, F., Maciel, G.S., Aquilanti, V., Sevryuk, M.B.: Simulation of oriented collision dynamics of simple chiral molecules. Int. J. Quantum Chem. 111, 1651–1658 (2011)CrossRefGoogle Scholar
  39. 39.
    Bergman, P., Parise, B., Liseau, R., Larsson, B., Olofsson, H., Menten, K.M., Gusten, R.: Detection of interstellar hydrogen peroxide. A&A 531, L8 (2011)CrossRefGoogle Scholar
  40. 40.
    Ray, K., Anathavel, S.P., Waldeck, D.H., Naaman, R.: Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999)CrossRefGoogle Scholar
  41. 41.
    Kim, J.W., Carbone, M., Dil, J.H., Tallarinda, M., Flammini, R., Casaletto, M.P., Horn, K., Piancastelli, M.N.: Atom-specific identification of adsorbed chiral molecules by photoemission. Phys. Rev. Lett. 95, 107601–107604 (2005)CrossRefGoogle Scholar
  42. 42.
    Gerbi, A., Vattuone, L., Rocca, M., Valbusa, U., Pirani, F., Cappelletti, D., Vecchiocattivi, F.: Stereodynamic effects int the adsorption of propylene molecules on ag(001). J. Phys. Chem. B 109, 22884–22889 (2005)CrossRefGoogle Scholar
  43. 43.
    Musigmann, M., Busalla, A., Blum, K., Thompson, D.G.: Enantio-selective collisions between unpolarized electrons and chiral molecules. J. Phys. B 34, L-79–L-85 (2001)CrossRefGoogle Scholar
  44. 44.
    Aquilanti, V., Ascenzi, D., deCastro Vitores, M., Pirani, F., Cappelletti, D.: A quantum mechanical view of molecular alignment and cooling in seeded supersonic expansion. J. Chem. Phys. 111, 2620–2632 (1999)CrossRefGoogle Scholar
  45. 45.
    Lombardi, A., Maciel, G.S., Palazzetti, F., Grossi, G., Aquilanti, V.: Alignment and chirality in gaseous flows. J. Vac. Soc. Jpn 53, 645–653 (2010)CrossRefGoogle Scholar
  46. 46.
    Pirani, F., Cappelletti, D., Bartolomei, M., Aquilanti, V., Scotoni, M., Vescovi, M., Ascenzi, D., Bassi, D.: Orientation of benzene in supersonic expansions, probed by ir-laser absorption and by molecular beam scattering. Phys. Rev. Lett 86, 5053–5038 (2001)CrossRefGoogle Scholar
  47. 47.
    Pirani, F., Bartolomei, M., Aquilanti, V., Scotoni, M., Vescovi, M., Ascenzi, D., Bassi, D., Cappelletti, D.: Collisional orientation of the benzene molecular plane in supersonic seeded expansions, probed by infrared polarized laser absorption spectroscopy and by molecular beam scattering. J. Chem. Phys. 119, 265–276 (2003)CrossRefGoogle Scholar
  48. 48.
    Pirani, F., Maciel, G.S., Cappelletti, D., Aquilanti, V.: Experimental benchmarks and phenomenology of interatomic forces: open shell and electronic anisotropy effect. Int. Rev. Phys. Chem. 25, 165–199 (2006)CrossRefGoogle Scholar
  49. 49.
    Pirani, F., Cappelletti, D., Bartolomei, M., Aquilanti, V., Demarchi, G., Tosi, P., Scotoni, M.: The collisional alignment of acetylene molecules in supersonic seeded expansions probed by infrared absorption and molecular beam scattering. Chem. Phys. Lett. 437, 176–182 (2007)CrossRefGoogle Scholar
  50. 50.
    Che, D.C., Palazzetti, F., Okuno, Y., Aquilanti, V.: Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide. J. Phys. Chem. A 114, 3280–3286 (2010)CrossRefGoogle Scholar
  51. 51.
    Ohoyama, H., Ogawa, T., Kasai, T.: A single rotational state analysis of the state-selected CH\(_3\)I beam: a new monte carlo simulation including the second-order stark effect. J. Phys. Chem. 99, 13606–13610 (1995)CrossRefGoogle Scholar
  52. 52.
    Hashinokuchi, M., Che, D.C., Watanabe, D., Fukuyama, T., Koyano, I., Shimizu, Y., Woelke, A., Kasai, T.: Single \(\mid {J \Omega M_{J}} >\) state-selection of oh radicals using an electrostatic hexapole field. Phys. Chem. Chem. Phys. 5, 3911–3915 (2003)CrossRefGoogle Scholar
  53. 53.
    Elango, M., Maciel, G.S., Lombardi, A., Cavalli, S., Aquilanti, V.: Quantum chemical and dynamical approaches to intra and intermolecular kinetics: the C\(_n\)H\(_{2n}\)O(n = 1, 2, 3) molecules. Int. J. Quantum Chem. 111, 1784–1791 (2011)CrossRefGoogle Scholar
  54. 54.
    Weida, M.J., Parmenter, C.A.: Aligning symmetric and asymmetric top molecules via single photon excitation. J. Chem. Phys. 107, 7138–7147 (1997)CrossRefGoogle Scholar
  55. 55.
    Bulthuis, J., Möller, J., Loesch, H.J.: Brute force orientation of asymmetric top molecules. J. Phys. Chem. A 101, 7684–7690 (1997)CrossRefGoogle Scholar
  56. 56.
    Hain, T.D., Weibel, M.A., Backstrand, K.M., Curtiss, T.J.: Rotational state selection and orientation of oh and od radicals by electric hexapole beam-focusing. J. Phys. Chem. A 101, 7674–7683 (1997)CrossRefGoogle Scholar
  57. 57.
    Imura, K., Kawashima, T., Ohoyama, H., Kasai, T., Nakajima, A., Kaya, K.: Non-destructive selection of geometrical isomers of the Al(C\(_6\)H\(_6\)) cluster by a 2 m electrostatic hexapole field. Phys. Chem. Chem. Phys. 3, 3593–3597 (2001)CrossRefGoogle Scholar
  58. 58.
    Imura, K., Kawashima, T., Ohoyama, H., Kasai, T.: Direct determination of the permanent dipole moments and structures of Al-CH\(_3\)CN and Al-NH\(_3\) by using 2-m electrostatic hexapole field. J. Am. Chem. Soc. 123, 6367–6371 (2001)CrossRefGoogle Scholar
  59. 59.
    Imura, K., Ohoyama, H., Kasai, T.: Metal-ligand interaction of Ti-C\(_6\)H\(_6\) complex size-selected by a 2-m long electrostatic hexapole field. Chem. Phys. Lett 369, 55–59 (2003)CrossRefGoogle Scholar
  60. 60.
    Imura, K., Ohoyama, H., Kasai, T.: Structures and its dipole moments of half-sandwich type metal-benzene (1: 1) complexes determined by 2-m long electrostatic hexapole. Chem. Phys. 301, 183–187 (2004)CrossRefGoogle Scholar
  61. 61.
    Vattuone, L., Savio, L., Pirani, F., Cappelletti, D., Okada, M., Rocca, M.: Interaction of rotationally aligned and of oriented molecules in gas phase and at surfaces. Prog. Surf. Sci. 85, 92–160 (2010)CrossRefGoogle Scholar
  62. 62.
    Pirani, F., Roncaratti, L.F., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the lennard-jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10, 5489–5503 (2008)CrossRefGoogle Scholar
  63. 63.
    Casavecchia, P.: Chemical reaction dynamics with molecular beams. Rep. Prog. Phys. 63, 355–414 (2000)CrossRefGoogle Scholar
  64. 64.
    Aquilanti, V., Caglioti, C., Lombardi, A., Maciel, G.S., Palazzetti, F.: Screens for displaying chirality changing mechanisms of a series of peroxides and persulfides from conformational structures computed by quantum chemistry. In: Gervasi, O., et al. (eds.) ICCSA 2017, Part V. LNCS, vol. 10408, pp. 354–368. Springer, Cham (2017)Google Scholar
  65. 65.
    Aquilanti, V., Ascenzi, D., Cappelletti, D., Fedeli, R., Pirani, F.: Molecular beam scattering of nitrogen molecules in supersonic seeded beams: a probe of rotational alignment. J. Phys. Chem. 101, 7648–7656 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andrea Lombardi
    • 1
    Email author
  • Federico Palazzetti
    • 1
  • Vincenzo Aquilanti
    • 1
    • 2
    • 3
  • Fernando Pirani
    • 1
  • Piergiorgio Casavecchia
    • 1
  1. 1.Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaPerugiaItaly
  2. 2.Istituto di Struttura della MateriaConsiglio Nazionale delle RicercheRomeItaly
  3. 3.Instituto de FisicaUniversidade Federal da BahiaSalvadorBrazil

Personalised recommendations