Decision Support System for Coffee Rust Control Based on Expert Knowledge and Value-Added Services

  • Emmanuel LassoEmail author
  • Óscar Valencia
  • Juan Carlos Corrales
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)


In coffee production, the quality and quantity of harvests depends on the diseases treatment. One of the diseases with the most negative impact is the Coffee Rust. It causes losses around 30% in Colombian coffee crops. Sever-al studies propose the use of computer sciences techniques for the automat-ic detection of conditions that trigger epidemics. On the other hand, the knowledge of experts in the control of the disease needs to be disseminated in a more agile way so that the farmers can make correct decisions to avoid great losses in the production. This paper presents a Decision Support System (DSS) for Coffee Rust Control based on expert knowledge. It recommends the best alternative for the application of fungicides and proposes some value-added services based on the integration of its functionalities with those offered in the services of an Early Warning System (EWS) for Coffee Rust. Our proposal represents a highly scalable and flexible solution for the disease management at farmer level.


Decision support Service bus SOA Expert knowledge Coffee rust Agriculture Disease management 



The authors are grateful to the University of Cauca and its Telematics Engineering Group (GIT), the Colombian Administrative Department of Science, Technology and Innovation (Colciencias), AgroCloud project of The Interinstitutional Network of Climate Change and Food Security of Colombia (RICCLISA) for supporting this research and the InnovAccion Cauca project of the Colombian Science, Technology and Innovation Fund (SGR-CTeI) for PhD scholarship granted to MSc. Emmanuel Lasso.


  1. 1.
    Avelino, J., et al.: The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur. 7(2), 303–321 (2015)CrossRefGoogle Scholar
  2. 2.
    Avelino, J., Willocquet, L., Savary, S.: Effects of crop management patterns on coffee rust epidemics. Plant. Pathol. 53(5), 541–547 (2004)CrossRefGoogle Scholar
  3. 3.
    Lasso, E., Thamada, T.T., Meira, C.A.A., Corrales, J.C.: Graph patterns as representation of rules extracted from decision trees for coffee rust detection. In: Garoufallou, E., Hartley, R.J., Gaitanou, P. (eds.) Metadata and Semantics Research, pp. 405–414. Springer International Publishing, Cham (2015)CrossRefGoogle Scholar
  4. 4.
    Corrales, D.C., Ledezma, A., Peña, A.J., Hoyos, J., Figueroa, A., Corrales, J.C.: Un nuevo conjunto de datos para la detección de roya en cultivos de café Colombianos basado en clasificadores. Sist. Telemática 12(29), 9–23 (2014)CrossRefGoogle Scholar
  5. 5.
    Corrales, D.C., Figueroa, A., Ledezma, A., Corrales, J.C.: An empirical multi-classifier for coffee rust detection in Colombian crops. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 60–74. Springer, Cham (2015). doi: 10.1007/978-3-319-21404-7_5 CrossRefGoogle Scholar
  6. 6.
    Corrales, D.C., Casas, A.F., Ledezma, A., Corrales, J.C.: Two-level classifier ensembles for coffee rust estimation in Colombian crops. Int. J. Agric. Environ. Inf. Syst. IJAEIS 7(3), 41–59 (2016)CrossRefGoogle Scholar
  7. 7.
    Meira, C.A.A., Rodrigues, L.H.A., Moraes, S.A.: Analysis of coffee leaf rust epidemics with decision tree. Trop. Plant Pathol. 33(2), 114–124 (2008)CrossRefGoogle Scholar
  8. 8.
    Meira, C.A.A., Rodrigues, L.H.A., de Moraes, S.A.: Modelos de alerta para o controle da ferrugem-do-cafeeiro em lavouras com alta carga pendente. Pesqui. Agropecuária Bras. 44, 233–242 (2009)CrossRefGoogle Scholar
  9. 9.
    Cintra, M.E., Meira, C.A.A., Monard, M.C., Camargo, H.A., Rodrigues, L.H.A.: The use of fuzzy decision trees for coffee rust warning in Brazilian crops. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 1347–1352 (2011)Google Scholar
  10. 10.
    Magarey, R.D., Travis, J.W., Russo, J.M., Seem, R.C., Magarey, P.A.: Decision support systems: quenching the thirst. Plant Dis. 86(1), 4–14 (2002)CrossRefGoogle Scholar
  11. 11.
    Keen, P.G., Morton, M.S.S.: Decision Support Systems: An Organizational Perspective, vol. 35. Addison-Wesley, Reading (1978)Google Scholar
  12. 12.
    Greer, J.E., Falk, S., Greer, K.J., Bentham, M.J.: Explaining and justifying recommendations in an agriculture decision support system. Comput. Electron. Agric. 11(2), 195–214 (1994)CrossRefGoogle Scholar
  13. 13.
    Rath, B.: Decision support system for drafting of sustainable agriculture production policy for Odisha. Int. J. Supply Chain Manag. 2(2), 92–98 (2013)Google Scholar
  14. 14.
    Rossi, V., Meriggi, P., Caffi, T., Giosué, S., Bettati, T.: A Web-based Decision Support System for Managing Durum Wheat Crops (2010)Google Scholar
  15. 15.
    Jones, J.W., et al.: Decision support system for agrotechnology transfer: DSSAT v3. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. (eds.) Understanding options for agricultural production. Systems Approaches for Sustainable Agricultural Development, vol. 7, pp. 157–177. Springer, Dordrecht (1998)CrossRefGoogle Scholar
  16. 16.
    Turban, E., Frenzel, L.E.: Expert Systems and Applied Artificial Intelligence. Prentice Hall Professional Technical Reference, Upper Saddle River (1992)Google Scholar
  17. 17.
    Turban, E., Watkins, P.R.: Integrating expert systems and decision support systems. MIS Q. 10, 121–136 (1986)CrossRefGoogle Scholar
  18. 18.
    Mansingh, G., Reichgelt, H., Bryson, K.-M.O.: CPEST: an expert system for the management of pests and diseases in the Jamaican coffee industry. Expert Syst. Appl. 32(1), 184–192 (2007)CrossRefGoogle Scholar
  19. 19.
    Chevalier, R.F., Hoogenboom, G., McClendon, R.W., Paz, J.O.: A web-based fuzzy expert system for frost warnings in horticultural crops. Environ. Model Softw. 35, 84–91 (2012)CrossRefGoogle Scholar
  20. 20.
    Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice Hall, Upper Saddle River (2005)Google Scholar
  21. 21.
    Xu, L., Chen, L., Chen, T., Gao, Y.: SOA-based precision irrigation decision support system. Math. Comput. Model. 54(3), 944–949 (2011)CrossRefGoogle Scholar
  22. 22.
    Han, W., Yang, Z., Di, L., Mueller, R.: CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput. Electron. Agric. 84, 111–123 (2012)CrossRefGoogle Scholar
  23. 23.
    Murakami, E., Saraiva, A.M., Ribeiro, L.C., Cugnasca, C.E., Hirakawa, A.R., Correa, P.L.: An infrastructure for the development of distributed service-oriented information systems for precision agriculture. Comput. Electron. Agric. 58(1), 37–48 (2007)CrossRefGoogle Scholar
  24. 24.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art and research challenges. Computer 40(11), 38–45 (2007)CrossRefGoogle Scholar
  25. 25.
    Rivillas, C., Serna, C., Cristancho, M.A., Gaitán, A.L.: Roya del Cafeto en Colombia: Impacto, Manejo y Costos del Control, Chinchiná Bol. Téc. (36) (2011)Google Scholar
  26. 26.
    White, S.A.: Introduction to BPMN, vol. 2. IBM Coop., Foster City (2004)Google Scholar
  27. 27.
    Rhee, C., Rao, H.R.: Evaluation of decision support systems, Handbook on Decision Support Systems, 2nd edn., pp. 313–327. Springer, Heidelberg (2008)Google Scholar
  28. 28.
    Cimperman, R.: UAT defined: a guide to practical user acceptance testing. Addison-Wesley Professional, Reading (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Grupo de Ingeniería TelemáticaUniversidad del CaucaPopayánColombia

Personalised recommendations