Advertisement

A Tool for Classification of Cacao Production in Colombia Based on Multiple Classifier Systems

  • Julián Eduardo Plazas
  • Iván Darío LópezEmail author
  • Juan Carlos Corrales
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)

Abstract

Cacao is one of the central crops that support the agrarian production in Colombia. In some areas, it is the main source of income for about 25.000 families. Frequently, its production is affected by several factors such as climate, soil, water, wind, among others. This paper presents a Machine Learning approach for classifying cacao production in the region of Santander, Colombia. The proposed system aims to link climate and cacao production data to develop the classification task. In this sense, several techniques were experimentally evaluated in order to determine the algorithm that generates the best model to classify new climate instances on the cacao production dataset. Experimental results showed a better precision for Random Forest in comparison with other evaluated techniques.

Keywords

Cacao production Classifiers Multiple Classifier Systems Classification Random Forest Supervised learning 

Notes

Acknowledgements

The authors would like to thank Universidad del Cauca, AgroCloud project of the RICCLISA program for supporting this research, and Colciencias (Colombia) for PhD scholarship granted to MSc. Iván Darío López and MSc(c). Julián Eduardo Plazas.

References

  1. 1.
    Leon, J.: Botánica de los cultivos tropicales (Botany of tropical crops), 2nd edn. IICA, San José (2000)Google Scholar
  2. 2.
    FEDECACAO - Cacaocultura en el departamento de Cundinamarca (Cacao culture in Cundinamarca). https://www.fedecacao.com.co/site/images/recourses/pub_doctecnicos/fedecacao-pub-doc_08B.pdf. Accessed 22 Nov 2016
  3. 3.
    Jones, J.W., Hoogenboom, G., Porter, C.H.: The DSSAT cropping system model. Eur. J. Agron. 18(3), 235–265 (2003)CrossRefGoogle Scholar
  4. 4.
    Dias, M., Navaratne, C., Weerasinghe, K., Hettiarachchi, H.: Application of DSSAT crop simulation model to identify the changes of rice growth and yield in Nilwala River Basin for mid-centuries under changing climatic conditions. Procedia Food Sci. 6, 159–163 (2016)CrossRefGoogle Scholar
  5. 5.
    Mishra, S., Mishra, D., Santra, G.H.: Applications of machine learning techniques in agricultural crop production: a review paper. Indian J. Sci. Technol. 9(38), 1–14 (2016)CrossRefGoogle Scholar
  6. 6.
    Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)CrossRefGoogle Scholar
  7. 7.
    Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. CRC Press, New York (2012)Google Scholar
  8. 8.
    Balakrishnan, N., Muthukumarasamy, G.: Crop production-ensemble machine learning model for prediction. Int. J. Comput. Sci. Softw. Eng. 5(7), 148–153 (2016)Google Scholar
  9. 9.
    FEDECACAO - Economía nacional del cacao (Cacao National Economy). http://www.fedecacao.com.co/portal/index.php/es/2015-02-12-17-20-59/nacionales. Accessed 28 Sept 2016
  10. 10.
    Tutiempo Network S.L - Clima en Bucaramanga/ Palonegro (Bucaramanga/ Palonegro Climate). http://www.tutiempo.net/clima/Bucaramanga_Palonegro/800940.htm. Accessed 28 Sept 2016
  11. 11.
    NOAA - NCEP/NCAR Global Reanalysis Products. http://rda.ucar.edu/datasets/ds090.0/. Accessed 30 Nov 2016
  12. 12.
    Chapman, J.C.: CRISP-DM 1.0: Step-by-Step Data Mining Guide. SPSS, New York (1999)Google Scholar
  13. 13.
    Machine Learning Project at the University of Waikato in New Zealand. http://www.cs.waikato.ac.nz/ml/weka/. Accessed 01 Dec 2015
  14. 14.
    Hassanat, A.B., Abbadi, M.A., Altarawneh, G.A., Alhasanat, A.A.: Solving the problem of the K parameter in the KNN classifier using an ensemble learning approach. Int. J. Comput. Sci. Inf. Secur. 12(8), 1–7 (2014)Google Scholar
  15. 15.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143. Morgan Kaufmann Publishers Inc. (1995)Google Scholar
  16. 16.
    Ćosović, M., Obradović, S., Trajković, L.: Performance evaluation of BGP anomaly classifiers. In: 2015 Third International Conference on Digital Information, Networking, and Wireless Communications (DINWC), pp. 115–120. IEEE (2015)Google Scholar
  17. 17.
    Red Hat - About WildFly. http://wildfly.org/about/. Accessed 13 Jan 2017
  18. 18.
    Red Hat - Undertow JBoss Community. http://undertow.io/. Accessed 13 Jan 2017
  19. 19.
    FEDECACAO - Manual de buenas prácticas agrícolas - BPA en el cultivo del Cacao. http://www.fedecacao.com.co/portal/images/recourses/pub_doctecnicos/fedecacao-pub-doc_11B.pdf. Accessed 16 Jan 2017

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Grupo de Ingeniería Telemática (GIT)Universidad del CaucaPopayánColombia

Personalised recommendations