Computing the Triangle Maximizing the Length of Its Smallest Side Inside a Convex Polygon

  • Sanjib SadhuEmail author
  • Sasanka Roy
  • Soumen Nandi
  • Subhas C. Nandy
  • Suchismita Roy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)


Given a convex polygon with n vertices, we study the problem of identifying a triangle with its smallest side as large as possible among all the triangles that can be drawn inside the polygon. We show that at least one of the vertices of such a triangle must be common with a vertex of the polygon. Next we propose an \(O(n^2\log n)\) time algorithm to compute such a triangle inside the given convex polygon.


Computational geometry Algorithms Properties of isosceles and equilateral triangles Optimal inclusion problem 



We thank Prof. Joseph O’Rourke for valuable suggestion on the Proof of Lemma 2.


  1. 1.
    Aggarwal, A., Klawe, M.M., Moran, S., Shor, P.W., Wilber, R.E.: Geometric applications of a matrix-searching algorithm. Algorithmica 2, 195–208 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alt, H., Hsu, D., Snoeyink, J.: Computing the largest inscribed isothetic rectangle. In: CCCG, pp. 67–72 (1995)Google Scholar
  3. 3.
    Boyce, J.E., Dobkin, D.P., Drysdale III, R.L.S., Guibas, L.J.: Finding extremal polygons. SIAM J. Comput. 14(1), 134–147 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cabello, S., Cheong, O., Knauer, C., Schlipf, L.: Finding largest rectangles in convex polygons. Comput. Geom. 51, 67–74 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chazelle, B., Sharir, M.: An algorithm for generalized point location and its applications. J. Symb. Comput. 10(3/4), 281–309 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Daniels, K.L., Milenkovic, V.J., Roth, D.: Finding the largest area axis-parallel rectangle in a polygon. Comput. Geom. Theor. Appl. 7, 125–148 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    DePano, A., Ke, Y., O’Rourke, J.: Finding largest inscribed equilateral triangles and squares. In: 25th Allerton Conference on Communication, Control, and Computing, pp. 869–878 (1987)Google Scholar
  8. 8.
    Dobkin, D.P., Snyder, L.: On a general method for maximizing and minimizing among certain geometric problems (extended abstract). In: FOCS, pp. 9–17. IEEE Computer Society (1979)Google Scholar
  9. 9.
    Hall-Holt, O.A., Katz, M.J., Kumar, P., Mitchell, J.S.B., Sityon, A.: Finding large sticks and potatoes in polygons. In: SODA, pp. 474–483 (2006)Google Scholar
  10. 10.
    Jin, K., Matulef, K.: Finding the maximum area parallelogram in a convex polygon. In: CCCG (2011)Google Scholar
  11. 11.
    Sadhu, S., Roy, S., Nandi, S., Maheshwari, A., Nandy, S.C.: Approximation algorithms for the two-center problem of convex polygon. CoRR abs/1512.02356 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sanjib Sadhu
    • 1
    Email author
  • Sasanka Roy
    • 2
  • Soumen Nandi
    • 2
  • Subhas C. Nandy
    • 2
  • Suchismita Roy
    • 1
  1. 1.Department of CSENational Institute of Technology DurgapurDurgapurIndia
  2. 2.Indian Statistical InstituteKolkataIndia

Personalised recommendations