Advertisement

Solution of the Inverse Bioheat Transfer Problem for the Detection of Tumors by Genetic Algorithms

  • Antonio Marcio Gonçalo Filho
  • Lucas Lagoa Nogueira
  • Joao Victor Caetano Silveira
  • Michelli Marlane Silva LoureiroEmail author
  • Felipe dos Santos Loureiro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)

Abstract

The problem of determining the size and location of a tumor situated underneath the skin by means of an inverse bioheat transfer analysis is considered in this article. The problem is posed by minimizing an error norm that considers the temperature information at the skin surface. Since Genetic Algorithms (GA’s) are powerful and versatile tools, a GA of steady–state type is implemented to solve the optimization problem originated from the inverse analysis. A finite element program based on the discretization of Pennes’ bioheat equation coupled with the Gmsh software is also developed to solve the set of direct problems required by the GA. A 2D numerical model is analyzed in order to demonstrate the effectiveness and robustness of the proposed approach.

Keywords

Genetic Algorithm Pennes’ equation FEM Inverse problem 

Notes

Acknowledgments

The financial support provided by UFSJ, CNPq and FAPEMIG is greatly acknowledged.

References

  1. 1.
    Partridge, P., Wrobel, L.: An inverse geometry problem for the localisation of skin tumours by thermal analysis. Eng. Anal. Bound. Elem. 31(10), 803–811 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Das, K., Mishra, S.C.: Non-invasive estimation of size and location of a tumor in a human breast using a curve fitting technique. Int. Commun. Heat Mass Transf. 56, 63–70 (2014)CrossRefGoogle Scholar
  3. 3.
    Das, K., Mishra, S.C.: Estimation of tumor characteristics in a breast tissue with known skin surface temperature. J. Therm. Biol. 38(6), 311–317 (2013)CrossRefGoogle Scholar
  4. 4.
    Souza, C., Souza, M., Colaço, M., Caldeira, A., Neto, F.S.: Inverse determination of blood perfusion coefficient by using different deterministic and heuristic techniques. J. Braz. Soc. Mech. Sci. Eng. 36(1), 193–206 (2014)CrossRefGoogle Scholar
  5. 5.
    Minkowycz, W.: Advances in Numerical Heat Transfer, vol. 3. CRC Press, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)Google Scholar
  7. 7.
    Loureiro, F., Mansur, W., Wrobel, L., Silva, J.: The explicit greens approach with stability enhancement for solving the bioheat transfer equation. Int. J. Heat Mass Transf. 76, 393–404 (2014)CrossRefGoogle Scholar
  8. 8.
    Reis, R.F., Loureiro, F., Lobosco, M.: 3D numerical simulations on GPUs of hyperthermia with nanoparticles by a nonlinear bioheat model. J. Comput. Appl. Math. 295, 35–47 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Iljaž, J., Škerget, L.: Blood perfusion estimation in heterogeneous tissue using bem based algorithm. Eng. Anal. Bound. Elem. 39, 75–87 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hossain, S., Mohammadi, F.A.: Tumor parameter estimation considering the body geometry by thermography. Comput. Biol. Med. 76, 80–93 (2016)CrossRefGoogle Scholar
  11. 11.
    Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)CrossRefGoogle Scholar
  12. 12.
    Michalewicz, Z., Hartley, S.J.: Genetic algorithms + data structures = evolution programs. Math. Intell. 18(3), 71 (1996)CrossRefGoogle Scholar
  13. 13.
    Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, vol. 4. Courier Corporation, New York (2012)Google Scholar
  14. 14.
    Geuzaine, C., Remacle, J.-F.: Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Num. Methods Eng. 79(11), 1309–1331 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, J., Xu, L.X.: Boundary information based diagnostics on the thermal states of biological bodies. Int. J. Heat Mass Transf. 43(16), 2827–2839 (2000)CrossRefzbMATHGoogle Scholar
  16. 16.
    Cao, L., Qin, Q.-H., Zhao, N.: An RBF-MFS model for analysing thermal behaviour of skin tissues. Int. J. Heat Mass Transf. 53(7), 1298–1307 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonio Marcio Gonçalo Filho
    • 1
  • Lucas Lagoa Nogueira
    • 1
  • Joao Victor Caetano Silveira
    • 1
  • Michelli Marlane Silva Loureiro
    • 1
    Email author
  • Felipe dos Santos Loureiro
    • 2
  1. 1.Department of Computer ScienceFederal University of São João del-ReiSão João del-ReiBrazil
  2. 2.Department of Thermal and Fluid SciencesFederal University of São João del-ReiSão João del-ReiBrazil

Personalised recommendations