Advertisement

Shifted Generalized Pascal Matrices in the Context of Clifford Algebra-Valued Polynomial Sequences

  • Isabel Cação
  • Helmuth R. Malonek
  • Graça TomazEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)

Abstract

The paper shows the role of shifted generalized Pascal matrices in a matrix representation of hypercomplex orthogonal Appell systems. It extends results obtained in previous works in the context of Appell sequences whose first term is a real constant to sequences whose initial term is a suitable chosen polynomial of n variables.

Keywords

Shifted generalized Pascal matrix Generalized Appell polynomials Matrix representation 

Notes

Acknowledgments

This work was supported in part by the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e Tecnologia”), through CIDMA-Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013.

References

  1. 1.
    Aceto, L., Cação, I.: A matrix approach to Sheffer polynomials. J. Math. Anal. Appl. 446, 87–100 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aceto, L., Malonek, H.R., Tomaz, G.: A unified matrix approach to the representation of Appell polynomials. Integral Transforms Spec. Funct. 26, 426–441 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aceto, L., Malonek, H.R., Tomaz, G.: Matrix approach to hypercomplex Appell polynomials. Appl. Num. Math. 116, 2–9 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aceto, L., Trigiante, D.: The matrices of Pascal and other greats. Amer. Math. Monthly 108, 232–245 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aceto, L., Trigiante, D.: Special polynomials as continuous dynamical systems. In: Cialdea, A., Dattoli, G., He, M.X., Shrivastava, H.M. (eds.) Lecture Notes of Seminario Interdisciplinare di Matematica, vol. 9, pp. 33–40 (2010)Google Scholar
  6. 6.
    Appell, P.: Sur une classe de polynômes. Ann. Sci. École Norm. Sup. 9(2), 119–144 (1880)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bock, S., Gürlebeck, K., Lávička, R., Souček, V.: Gelfand-Tsetlin bases for spherical monogenics in dimension 3. Rev. Mat. Iberoam. 28(4), 1165–1192 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cação, I., Falcão, M.I., Malonek, H.R.: Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Math. Comput. Modelling 53, 1084–1094 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cação, I., Falcão, M.I., Malonek, H.R.: A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials. Adv. Appl. Clifford Algebras 24, 981–994 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cação, I., Falcão, M.I., Malonek, H.R.: Three-term recurrence relations for systems of Clifford algebra-valued orthogonal polynomials. Adv. Appl. Clifford Algebras 27, 71–85 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Call, G.S., Velleman, D.J.: Pascal’s matrices. Am. Math. Monthly 100(4), 372–376 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carlson, B.C.: Polynomials satisfying a binomial theorem. J. Math. Anal. Appl. 32, 543–558 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Falcão, M.I., Malonek, H.R.: Generalized exponentials through Appell sets in \(\mathbb{R}^{n+1}\) and Bessel functions. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 936, pp. 738–741 (2007)Google Scholar
  14. 14.
    Gürlebeck, K., Malonek, H.R.: A hypercomplex derivative of monogenic functions in \(\mathbb{R}^{m+1}\) and its applications. Complex Variables 39, 199–228 (1999)Google Scholar
  15. 15.
    Lávička, R.: Complete orthogonal Appell systems for spherical monogenics. Complex Anal. Oper. Theory 6, 477–489 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Peña Peña, D.: Shifted Appell sequences in Clifford analysis. Results Math. 63, 1145–1157 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Isabel Cação
    • 1
  • Helmuth R. Malonek
    • 1
  • Graça Tomaz
    • 1
    • 2
    Email author
  1. 1.Centro de Investigação e Desenvolvimento em Matemática e AplicaçõesUniversidade de AveiroAveiroPortugal
  2. 2.Unidade de Investigação para o Desenvolvimento do InteriorInstituto Politécnico da GuardaGuardaPortugal

Personalised recommendations