Advertisement

Enhancing Creativity in Risk Assessment of Complex Sociotechnical Systems

  • Alex Coletti
  • Antonio De NicolaEmail author
  • Maria Luisa Villani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)

Abstract

We propose the CREAM (CREAtivity Machine) software system to enhance the creativity of experts during vulnerability and risk assessment of complex sociotechnical systems. Our assumption is that a new idea related to a risk can be represented as a fragment of a conceptual model, here named risk mini-model, that can be generated by means of an ontology-based approach for computational creativity. In our solution risk mini-models activate a creative process for stakeholders to identify and understand risks. The whole set of risk mini-models for a specific risk constitutes a risk conceptual model. Such models are included in a knowledge base together with a domain ontology and a set of rules.

Keywords

Risk assessment Computational creativity Water system Ontology 

Notes

Acknowledgements

The work of Alex Coletti was conducted at SMRC, with partial funding from a NOAA-CPO research grant. The work of Antonio De Nicola and Maria Luisa was conducted at ENEA and was partially supported by the Italian Project ROMA (Resilience enhancement Of Metropolitan Area) (SCN_00064). We kindly acknowledge Bálint Bálazs and Michele Melchiori for stimulating discussions.

References

  1. 1.
    Bálazs, B.: Social innovation and science cafe in the digital age. Keynote speech at the second international workshop on mobile and social computing for collaborative interactions (MSC 2015), October 2015Google Scholar
  2. 2.
    Borgida, A., Mylopoulos, J., Wong, H.K.T.: Generalization/specialization as a basis for software specification. In: Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.) On Conceptual Modelling, pp. 87–117. Springer, New York (1984)CrossRefGoogle Scholar
  3. 3.
    Borst, W.N.: Construction of engineering ontologies for knowledge sharing and reuse. Universiteit Twente (1997)Google Scholar
  4. 4.
    Camporeale, C., De Nicola, A., Villani, M.L.: Semantics-based services for a low carbon society: an application on emissions trading system data and scenarios management. Environ. Model. Softw. 64, 124–142 (2015)CrossRefGoogle Scholar
  5. 5.
    Chesbrough, H.: From open science to open innovation. Institute for Innovation and Knowledge Management, ESADE (2015)Google Scholar
  6. 6.
    Coletti, A., De Nicola, A., Villani, M.L.: Building climate change into risk assessments. Nat. Hazards 84(2), 1307–1325 (2016)CrossRefGoogle Scholar
  7. 7.
    Coletti, A., Howe, P., Yarnal, B.: Local resilience of community water systems and severe weather patterns. In: 94th AMS Conference, Atlanta, GA (2014)Google Scholar
  8. 8.
    Cooperrider, D., Whitney, D.D: Appreciative Inquiry: A Positive Revolution in Change. Berrett-Koehler Publishers (2005)Google Scholar
  9. 9.
    De Nicola, A., Melchiori, M., Villani, M.L.: A semantics-based approach to generation of emergency management scenario models. In: Mertins, K., Bénaben, F., Poler, R., Bourrières, J.-P. (eds.) Enterprise Interoperability VI. PIC, vol. 7, pp. 163–173. Springer, Cham (2014). doi: 10.1007/978-3-319-04948-9_14 CrossRefGoogle Scholar
  10. 10.
    De Nicola, A., Melchiori, M., Villani, M.L.: A lateral thinking framework for semantic modelling of emergencies in smart cities. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014. LNCS, vol. 8645, pp. 334–348. Springer, Cham (2014). doi: 10.1007/978-3-319-10085-2_31 Google Scholar
  11. 11.
    De Nicola, A., Missikoff, M.: A lightweight methodology for rapid ontology engineering. Commun. ACM 59(3), 79–86 (2016)CrossRefGoogle Scholar
  12. 12.
    De Nicola, A., Villani, M.L.: Creative sparks for collaborative innovation. In: Rossignoli, C., Virili, F., Za, S. (eds.) Digital Technology and Organizational Change: Reshaping Technology, People, and Organizations Towards a Global Society. LNISO, vol. 23. Springer, Cham (2018). doi: 10.1007/978-3-319-62051-0
  13. 13.
    Diamantini, C., Missikoff, M., Potena, D.: Open innovation in virtual enterprises: an ontology-based approach. In: Poler, R., Doumeingts, G., Katzy, B., Chalmeta, R. (eds.) Enterprise Interoperability V: Shaping Enterprise Interoperability in the Future Internet, pp. 165–175. Springer, London (2012)CrossRefGoogle Scholar
  14. 14.
    Dow, A.K., Dow, E.M., Fitzsimmons, T.D., Materise, M.M.: Harnessing the environmental data flood: a comparative analysis of hydrologic, oceanographic, and meteorological informatics platforms. Bull. Am. Meteorol. Soc. 96(5), 725–736 (2015)CrossRefGoogle Scholar
  15. 15.
    EPA2013: Geographic information systems analysis of the surface drinking water provided by intermittent, ephemeral and headwater streams in the U.S. (2014)Google Scholar
  16. 16.
    Florig, H.K., Granger Morgan, M., Morgan, K.M., Jenni, K.E., Fischhoff, B., Fischbeck, P.S., DeKay, M.L.: A deliberative method for ranking risks (i): overview and test bed development. Risk Anal. 21(5), 913–913 (2001)CrossRefGoogle Scholar
  17. 17.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)CrossRefGoogle Scholar
  18. 18.
    Hunt, J.R., Baldocchi, D.R., van Ingen, C.: Redefining ecological science using data. In: Hey, T., Tansley, S., Tolle, K. (eds.) The Fourth Paradigm: Data-Intensive Scientific Discovery, pp. 21–26. Microsoft Research, Redmond, Washington (2009)Google Scholar
  19. 19.
    Apache Jena, version 2.11.1 (2013). http://jena.apache.org
  20. 20.
    Kusiak, A.: Put innovation science at the heart of discovery. Nature 530(7590), 255 (2016)CrossRefGoogle Scholar
  21. 21.
    Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS Approach. Springer Science & Business Media, Heidelberg (2010)zbMATHGoogle Scholar
  22. 22.
    Lurie, N.H., Mason, C.H.: Visual representation: implications for decision making. J. Mark. 71(1), 160–177 (2007)CrossRefGoogle Scholar
  23. 23.
    Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM Sigmod Rec. 33(4), 65–70 (2004)CrossRefGoogle Scholar
  24. 24.
    OMG-MDA: MDA guide, version 1.0.1 (2003). http://www.omg.org/mda/presentations.htm. Accessed 4 Mar 2016
  25. 25.
    Pagano, A., Giordano, R., Portoghese, I., Fratino, U., Vurro, M.: A bayesian vulnerability assessment tool for drinking water mains under extreme events. Nat. Hazards 74(3), 2193–2227 (2014)CrossRefGoogle Scholar
  26. 26.
    Pease, A., Winterstein, D., Colton, S.: Evaluating machine creativity. In: Workshop on Creative Systems, 4th International Conference on Case Based Reasoning, pp. 129–137 (2001)Google Scholar
  27. 27.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006). doi: 10.1007/11926078_3 CrossRefGoogle Scholar
  28. 28.
    Speer, R., Havasi, C., Lieberman, H.: AnalogySpace: reducing the dimensionality of common sense knowledge. In: Proceedings of the 23rd National Conference on Artificial Intelligence, AAAI 2008, vol. 1, pp. 548–553. AAAI Press (2008)Google Scholar
  29. 29.
    Stanford: Protégé ontology management system (2016). http://protege.stanford.eduabout.php. Accessed 24 Feb 2016
  30. 30.
    Weijnen, M.P.C., Herder, P.M., Bouwmans, I.: Designing complex systems: a contradiction in terms. In: Eekhout, M., Visser, R., Tomiyama, T. (eds.) Delft Science in Design\(^2\). A Congress on Interdisciplinary Design, pp. 235–254 (2008)Google Scholar
  31. 31.
    Werner, B.: European waters - current status and future challenges - synthesis. EEA report No. 9/2012 (2012)Google Scholar
  32. 32.
    Yan, W., Zanni-Merk, C., Cavallucci, D., Collet, P.: An ontology-based approach for inventive problem solving. Eng. Appl. Artif. Intell. 27, 175–190 (2014)CrossRefGoogle Scholar
  33. 33.
    Zanni-Merk, C., Cavallucci, D., Rousselot, F.: An ontological basis for computer aided innovation. Comput. Ind. 60(8), 563–574 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.SMRCAshburnUSA
  2. 2.ENEA-CR CasacciaRomeItaly

Personalised recommendations