Skip to main content

A Geospatial Decision Support Tool for Seismic Risk Management: Florence (Italy) Case Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10405))

Abstract

Seismic risk assessment, which attempts to predict earthquake-induced physical impacts on structures and infrastructures, casualties and losses can be a powerful tool to support emergency response planning as well as the development of effective mitigation strategies. The Civil Protection (CP) Department of Florence Municipality commissioned this study as historical earthquakes showed an appreciable seismic risk for the city that needed careful civil protection planning. A Decision Support System DSS (CIPCast-ES) developed by ENEA, APIC Lab, in the framework of the EU-funded project CIPRNet, was used to simulate the seismic and impact scenarios for two major historical earthquakes felt in Florence, to assess the earthquake-induced damage at single building level, and the relative expected consequences on population. The possibility to account for the seismic microzonation (i.e. the possible amplification of the seismic hazard and therefore of the expected impacts due to soil conditions) was also included within DSS. The results of the scenario analysis, presented in the paper in tabular format, were provided to the CP of Florence Municipality as queryable, interactive and end-user friendly web-version maps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When the information on the number of stories above the ground was not available it was estimated as the height divided by 3, being 3 m the standard inter-story height for residential building in Italy.

References

  1. Daniell, J.E.: Open source procedure for assessment of loss using global earthquake modelling software (OPAL). Nat. Hazards Earth Syst. Sci. 11, 1885–1900 (2011)

    Article  Google Scholar 

  2. Erdik, M., Şeşetyan, K., Demircioğlu, M.B., Hancılar, U., Zülfikar, C.: Rapid earthquake loss assessment after damaging earthquakes. In: Garevski, M., Ansal, A. (eds.) Earthquake Engineering in Europe. GGEE, vol. 17, pp. 523–547. Springer, Cham (2010). doi:10.1007/978-90-481-9544-2_21

    Chapter  Google Scholar 

  3. Spence, R.J.S., So, E.K.M.: Human casualties in earthquakes: modelling and mitigation. In: Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 2011, p. 224 (2011)

    Google Scholar 

  4. Strasser, F.O., Bommer, J.J., Şeşetyan, K., Erdik, M., Çağnan, Z., Irizarry, J., Goula, X., Lucantoni, A., Sabetta, F., Bal, I.E., Crowley, H., Lindholm, C.: A comparative study of European earthquake loss estimation tools for a scenario in Istanbul. J. Earthq. Eng. 12, 246–256 (2008)

    Article  Google Scholar 

  5. GEM: The OpenQuake-engine User Manual. Global Earthquake Model (GEM) Technical report 2017-02. (2017)

    Google Scholar 

  6. NIBS: HAZUS MR4 Technical Manual. National institute of Building Sciences, Washington, DC (2004)

    Google Scholar 

  7. MAE, M.-A.E.C.: Mid-America Earthquake Centre Seismic Loss Assessment System - MAEviz v3.1.1 (2007). http://mae.cee.illinois.edu/software/software.html

  8. Molina, S., Lang, D.H., Lindholm, C.D.: SELENA – an open-source tool for seismic risk and loss assessment using a logic tree computation procedure. Comput. Geosci. 36, 257–269 (2010)

    Article  Google Scholar 

  9. Pollino, M., Fattoruso, G., Rocca, A.B., Porta, L., Curzio, S.L., Arolchi, A., James, V., Pascale, C.: An open source GIS system for earthquake early warning and post-event emergency management. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, Bernady O. (eds.) ICCSA 2011. LNCS, vol. 6783, pp. 376–391. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21887-3_30

    Chapter  Google Scholar 

  10. Pollino, M., Fattoruso, G., La Porta, L., Della Rocca, A.B., James, V.: Collaborative open source geospatial tools and maps supporting the response planning to disastrous earthquake events. Futur. Internet. 4, 451–468 (2012)

    Article  Google Scholar 

  11. Pietro, A., Lavalle, L., La Porta, L., Pollino, M., Tofani, A., Rosato, V.: Design of DSS for supporting preparedness to and management of anomalous situations in complex scenarios. In: Setola, R., Rosato, V., Kyriakides, E., Rome, E. (eds.) Managing the Complexity of Critical Infrastructures. SSDC, vol. 90, pp. 195–232. Springer, Cham (2016). doi:10.1007/978-3-319-51043-9_9

    Chapter  Google Scholar 

  12. Pollino, M., Modica, G.: Free web mapping tools to characterise landscape dynamics and to favour e-participation. In: Murgante, B., Misra, S., Carlini, M., Torre, Carmelo M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7973, pp. 566–581. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39646-5_41

    Chapter  Google Scholar 

  13. Rosato, V., Pietro, A., Porta, L., Pollino, M., Tofani, A., Marti, José R., Romani, C.: A decision support system for emergency management of critical infrastructures subjected to natural hazards. In: Panayiotou, C.G.G., Ellinas, G., Kyriakides, E., Polycarpou, M.M.M. (eds.) CRITIS 2014. LNCS, vol. 8985, pp. 362–367. Springer, Cham (2016). doi:10.1007/978-3-319-31664-2_37

    Chapter  Google Scholar 

  14. GFDRR: Understanding Risk - Review of Open Source and Open Access Software Packages Available to Quantify Risk from Natural Hazards (2015)

    Google Scholar 

  15. Kongar, I., Giovinazzi, S.: Damage to Infrastructure: Modeling. In: Beer, M., Kougioumtzoglou, I.A., Patelli, E., Siu-Kui Au, I. (eds.) Encyclopedia of Earthquake Engineering, pp. 1–14. Springer, Heidelberg (2014). doi:10.1007/978-3-642-36197-5_356-1

  16. Bommer, J.J.: Deterministic vs. probabilistic seismic hazard assessment: an exaggerated and obstructive dichotomy. J. Earthq. Eng. 6, 43–73 (2002)

    Google Scholar 

  17. Krinitzsky, E.L.: Deterministic versus probabilistic seismic hazard analysis for critical structures. Eng. Geol. 40, 1–7 (1995)

    Article  Google Scholar 

  18. McGuire, R.K.: Deterministic vs. probabilistic earthquake hazards and risks. Soil Dyn. Earthq. Eng. 21, 377–384 (2001)

    Article  Google Scholar 

  19. Kramer, S.L.: Geotechnical Earthquake Engineering. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  20. Whitman, R.V., Reed, J.W., Hong, S.T.: Earthquake damage probability matrices. In: Proceedings of 5th European Conference on Earthquake Engineering, Roma, pp. 25–31 (1973)

    Google Scholar 

  21. Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., Valensise, G.: CFTI4Med - Catalogue of Strong Earthquakes in Italy (461 B.C.-1997) and Mediterranean Area (760 B.C.-1500). http://storing.ingv.it/cfti4med/

  22. Rossetto, T., Elnashai, A.: Derivation of vulnerability functions for European-type RC structures based on observational data. Eng. Struct. 25, 1241–1263 (2003)

    Article  Google Scholar 

  23. Tiedemann, H.: Casualties as a function of building quality and earthquake intensity. In: Proceedings of the International Workshop on Earthquake Injury Epidemiology for Mitigation and Response, pp. 420–434. Johns Hopkins University, Baltimore (MD)

    Google Scholar 

  24. Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi, G.M., Boschi, E.: Seismic hazard assessment (2003–2009) for the Italian building code. Bull. Seismol. Soc. Am. 101, 1885–1911 (2011)

    Article  Google Scholar 

  25. Locati, M., Camassi, R., Rovida, A., Ercolani, E., Bernardini, F., Castelli, V., Caracciolo, C.H., Tertulliani, A., Rossi, A., Azzaro, R., D’Amico, S.: DBMI15, the 2015 version of the Italian Macroseismic Database. http://emidius.mi.ingv.it/

  26. DISS Working Group: Database of Individual Seismogenic Sources (DISS), Version 3.2.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/

  27. Boccaletti, M., Corti, G., Gasperini, P., Piccardi, L., Vannucci, G., Clemente, S.: Active tectonics and seismic zonation of the urban area of Florence, Italy. Pure Appl. Geophys. 158, 2313–2332 (2001)

    Article  Google Scholar 

  28. Martini, I.P., Sagri, M.: Tectono-sedimentary characteristics of Late Miocene-Quaternary extensional basins of the Northern Apennines, Italy. Earth-Sci. Rev. 34, 197–233 (1993)

    Article  Google Scholar 

  29. Barani, S., Spallarossa, D., Bazzurro, P.: Disaggregation of probabilistic ground-motion hazard in Italy. Bull. Seismol. Soc. Am. 99, 2638–2661 (2009)

    Article  Google Scholar 

  30. Dipartimento di Scienze della Terra - DST: Studi geologici e sismici dell’area fiorentina: approfondimenti per una zonazione sismica [Geological and seismic studies in the Florence area: insights for a seismic zonation], Florence, Italy (2013)

    Google Scholar 

  31. Idriss, I.M., Sun, J.I.: User’s Manual for Shake91 – A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits. University of California - Center for Geotechnical Modeling, Department of Civil & Environmental Engineering (1992)

    Google Scholar 

  32. Sabetta, F., Pugliese, A.: Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull. Seismol. Soc. Am. 86, 337–352 (1996)

    Google Scholar 

  33. Douglas, J., Climent, D.M., Negulescu, C., Roullé, A., Sedan, O.: Limits on the potential accuracy of earthquake risk evaluations using the L’Aquila (Italy) earthquake as an example. Ann. Geophys. 58, 1–17 (2015)

    Google Scholar 

  34. Mak, S., Clements, R.A., Schorlemmer, D.: Validating intensity prediction equations for Italy by observations. Bull. Seismol. Soc. Am. 105, 2942–2954 (2015)

    Article  Google Scholar 

  35. Mak, S., Schorlemmer, D.: Erratum to validating intensity prediction equations for Italy by observations. Bull. Seismol. Soc. Am. 106, 2409–2413 (2016)

    Article  Google Scholar 

  36. Faccioli, E., Cauzzi, C.: Macroseismic intensities for seismic scenarios estimated from instrumentally based correlations. In: Proceedings of the First European Conference on Earthquake Engineering and Seismology - Geneva, Switzerland, 3–8 September 2006, ECEES (2006)

    Google Scholar 

  37. Pasolini, C., Gasperini, P., Albarello, D., Lolli, B., D’Amico, V.: The attenuation of seismic intensity in Italy, Part I: theoretical and empirical backgrounds. Bull. Seismol. Soc. Am. 98, 682–691 (2008)

    Article  Google Scholar 

  38. Allen, T.I., Wald, D.J., Worden, C.B.: Intensity attenuation for active crustal regions. J. Seismol. 16, 409–433 (2012)

    Article  Google Scholar 

  39. Margottini, C., Molin, D., Serva, L.: Intensity versus ground motion: a new approach using Italian data. Eng. Geol. 33, 45–58 (1992)

    Article  Google Scholar 

  40. Giovinazzi, S.: The Vulnerability Assessment and the Damage Scenario in Seismic Risk Analysis (2005). http://www.digibib.tu-bs.de/?docid=00001757

  41. Grünthal, G., Musson, R., Schwarz, J., Stucchi, M.: European Macroseismic Scale 1998 (EMS-98). Centre Europèen de Géodynamique et de Séismologie, Luxembourg (1998)

    Google Scholar 

  42. Spence, R.: Intensity, damage and loss in Earthquakes in seismic damage to masonry buildings. In: Bernardini, A. (ed.) Seismic Damage to Masonry Buildings, pp. 27–40. Balkema, Rotterdam (1999)

    Google Scholar 

  43. Musson, R.M.W., Grünthal, G., Stucchi, M.: The comparison of macroseismic intensity scales. J. Seismol. 14, 413–428 (2010)

    Article  Google Scholar 

  44. Giovinazzi, S.: Geotechnical hazard representation for seismic risk analysis. Bull. New Zeal. Soc. Earthq. Eng. 42, 221–234 (2009)

    Google Scholar 

  45. Lagomarsino, S., Giovinazzi, S.: Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull. Earthq. Eng. 4, 415–443 (2006)

    Article  Google Scholar 

  46. Lagomarsino, S.: Vulnerability assessment of historical buildings. In: Oliveira, C.S., Roca, A., Goula, X. (eds.) Assessing and Managing Earthquake Risk: Geo-scientific and Engineering Knowledge for Earthquake Risk Mitigation: Developments, Tools, Techniques. Geotechnical, Geological and Earthquake Engineering, vol. 2, pp. 135–158. Springer, Netherlands (2006). doi:10.1007/978-1-4020-3608-8_7

    Google Scholar 

  47. Coburn, A., Spence, R.: Earthquake risk modelling. In: Earthquake Protection, pp. 311–352. Wiley, Chichester (2006)

    Google Scholar 

  48. Franchin, P.: A computational framework for systemic seismic risk analysis of civil infrastructural systems. In: Pitilakis, K., Franchin, P., Khazai, B., Wenzel, H. (eds.) SYNER-G: Systemic Seismic Vulnerability and Risk Assessment of Complex Urban, Utility, Lifeline Systems and Critical Facilities. GGEE, vol. 31, pp. 23–56. Springer, Dordrecht (2014). doi:10.1007/978-94-017-8835-9_2

    Google Scholar 

  49. Bramerini, F., Di Pasquale, G., Orsini, G., Pugliese, A.: Rischio sismico del territorio italiano. Proposta di una metodologia e resultati preliminari [Seismic risk of the Italian territory. Proposal for a methodology and preliminary results] - Technical report n. SSN/RT/95/01, Rome, Italy (1995)

    Google Scholar 

  50. Anhorn, J., Khazai, B.: Open space suitability analysis for emergency shelter after an earthquake. Nat. Hazards Earth Syst. Sci. 15, 789–803 (2015)

    Article  Google Scholar 

  51. Cioppi, E.: 18 maggio 1895: storia di un terremoto fiorentino [18 May 1895: history of a Florentine earthquake]. Osservatorio Ximeniano, Firenze (1995)

    Google Scholar 

  52. Guidoboni, E., Guidoboni, E., Ferrari, G.: Historical cities and earthquakes: Florence during the last nine centuries and evaluations of seismic hazard. Ann. Geophys. 38, 617–647 (1995)

    Google Scholar 

Download references

Acknowledgement and Disclaimer

This article was derived from the FP7 project CIPRNet, which has received funding from the European Union’s 7th Framework Programme for research, technological development and demonstration under grant agreement no. 312450. The contents of this article do not necessarily reflect the official opinion of the EU. Information and views expressed in the paper are based on personal research experiences, therefore responsibility for that lies entirely with the authors. There are several variables and data uncertainties that might affects and alter the results reported in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Giovinazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Matassoni, L., Giovinazzi, S., Pollino, M., Fiaschi, A., La Porta, L., Rosato, V. (2017). A Geospatial Decision Support Tool for Seismic Risk Management: Florence (Italy) Case Study. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10405. Springer, Cham. https://doi.org/10.1007/978-3-319-62395-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62395-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62394-8

  • Online ISBN: 978-3-319-62395-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics