Earthquake’s Rubble Heaps Volume Evaluation: Expeditious Approach Through Earth Observation and Geomatics Techniques

  • Sergio CappucciEmail author
  • Luigi De Cecco
  • Fabio Gemerei
  • Ludovica Giordano
  • Lorenzo Moretti
  • Alessandro Peloso
  • Maurizio Pollino
  • Riccardo Scipinotti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)


When an earthquake of a certain magnitude hit a populated zone, a huge amount of data have to be collected in order to address the typical hazard and emergency actions for rescue, assistance, viability, etc. In this paper we concentrate our attention on a particular dataset used to estimate the amount (and location) of rubbles generated by partial or total collapse of buildings/structures, which strongly influences the consequent environmental hazard and reconstruction phase. Despite this information is particularly valuable for optimizing the emergence response, for example by improving the management of their prompt removal, there are not many methods to estimate the amount of the rubbles in terms of volume/weight. Here, a procedure to estimate the volume of rubble heaps through earth observation data and Geomatics techniques is presented and preliminary results discussed.


Earthquake Rubbles Geomatics LIDAR Post-emergency management Emergency Management System COPERNICUS 



The present research has been funded by ENEA and requested by DPC. EO data were provided under COPERNICUS by European Union and ESA. Thanks to Eng. F. Campopiano, P. Marsan and P. Pagliara of National Civil Protection for the fruitful discussion and suggestions and to all staff involved during the emergency action. ENEA is not responsible for any use, even partial, of the contents of this document by third parties and any damage caused to third parties resulting from its use. The data contained in this document is the property of ENEA.


  1. 1.
    United States Environmental Protection Agency: Household Hazardous Waste Management: A Manual for One-Day Community Collection Programs. EPA530-R-92-026, Washington, D.C., August 1993Google Scholar
  2. 2.
    Lund, H.F.: Household Hazardous Wastes. The McGraw-Hill Recycling Handbook (1993)Google Scholar
  3. 3.
    Memon, M.A.: Disaster waste recovery and utilization in developing countries-Learning from earthquakes in Nepal. In: 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, pp. 143–147 (2015)Google Scholar
  4. 4.
    Talbot, B.G., Talbot, L.M.: Fast-responder: Mobile access to remote sensing for disaster response. Photogramm. Eng. Remote Sens. 79(10), 945–954 (2013)CrossRefGoogle Scholar
  5. 5.
    Amatrice, Norcia, Visso Seismic Sequence, INGV. Last access: 28 Mar 2017. (In Italian)
  6. 6.
    Pizzi, A., Galadini, F.: Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy). Tectonophysics 476, 304–319 (2009). doi: 10.1016/j.tecto.2009.03.018 CrossRefGoogle Scholar
  7. 7.
    Coltorti, M., Farabollini, P.: Quaternary evolution of the Castelluccio di Norcia Basin (Umbria-Marchean Apennines, Italy). Il Quaternario 8, 149–166 (1995)Google Scholar
  8. 8.
    King, G.C.P.: Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure. Pure Appl. Geophys. 124(3), 567–585 (1986)CrossRefGoogle Scholar
  9. 9.
    Hernandez, B., Cocco, M., Cotton, F., Stramondo, S., Scotti, O., Courboulex, F., Campillo, M.: Rupture history of the 1997 Umbria-Marche (Central Italy) main shocks from the inversion of GPS, DInSAR and near field strong motion data. Ann. Geophys. 47, 1355–1376 (2004)Google Scholar
  10. 10.
    Valensise, G., Pantosti, D.: The investigation of potential earthquake sources in peninsular Italy: a review. J. Seismol., 5287–5306 (2001)Google Scholar
  11. 11.
    Calamita, F., Pizzi, A.: Tettonica quaternaria nella dorsal appenniniica umbro-marchigiana e bacini intrappenninici associate. Studi Geologici Camerti, SI, 17–25 (1992)Google Scholar
  12. 12.
    Cacciuni, A., Centamore, E., Di Stefano, R., Dramis, F.: Evoluzione morfotettonica della conca di Amatrice. Studi Geologici Camerti 2, 95–100 (1995)Google Scholar
  13. 13.
    Copernicus Emergency Management Service (EMS).
  14. 14.
    Pollino, M., Modica, G.: Free web mapping tools to characterize landscape dynamics and to favor e-participation computational science and its applications. In: Murgante, B., et al. (eds.) ICCSA 2013, LNCS 7973, Part III, 566–581. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Modica, G., Pollino, M., Lanucara, S., Porta, L., Pellicone, G., Fazio, S., Fichera, C.R.: Land suitability evaluation for agro-forestry: definition of a web-based multi-criteria spatial decision support system (MC-SDSS): preliminary results. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 399–413. Springer, Cham (2016). doi: 10.1007/978-3-319-42111-7_31 CrossRefGoogle Scholar
  16. 16.
    Steiniger, S., Hunter, A.J.S.: Free and open source GIS software for building a spatial data infrastructure. In: Bocher, E., Neteler, M. (eds.) Geospatial Free and Open Source Software in the 21st Century, pp. 247–261. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Modica, G., Laudari, L., Barreca, F., Fichera, C.R.: A GIS-MCDA based model for the suitability evaluation of traditional grape varieties: the case-study of ‘mantonico’ grape (Calabria, Italy). IJAEIS 5(3), 1–16 (2014)Google Scholar
  18. 18.
    PostgreSQL with PostGIS extension.
  19. 19.
  20. 20.
  21. 21.
    Pollino, M., Caiaffa, E., Carillo, A., Porta, L., Sannino, G.: Wave energy potential in the mediterranean sea: design and development of DSS-WebGIS “waves energy”. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, Marina L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9157, pp. 495–510. Springer, Cham (2015). doi: 10.1007/978-3-319-21470-2_36 CrossRefGoogle Scholar
  22. 22.
    CNR-ITC, C.N.VV.FF.: Sisma Abruzzo 6 Aprile 2009 - Stima quantificazione macerie, Activity Report (2010). (In Italian)Google Scholar
  23. 23.
    Marghella, G., Marzo, A., Moretti, L., Indirli, M.: Uso del GIS per il Piano di Ricostruzione di Arsita (TE). In: ANIDIS 2013 – XV Convegno (2013). (In Italian)Google Scholar
  24. 24.
    Modica, G., Zoccali, P., Fazio, S.: The e-participation in tranquillity areas identification as a key factor for sustainable landscape planning. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7973, pp. 550–565. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39646-5_40 CrossRefGoogle Scholar
  25. 25.
    Fichera, C.R., Modica, G., Pollino, M.: Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. Eur. J. Remote Sens. 45, 1–18 (2012)CrossRefGoogle Scholar
  26. 26.
    European Flood Awareness System (EFAS).
  27. 27.
    European Forest Fire Information System (EFFIS).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRomaItaly

Personalised recommendations