Preventive Approach to Reduce Risk Caused by Failure of a Rainwater Drainage System: The Case Study of Corato (Southern Italy)

  • Ciro ApollonioEmail author
  • Roberto Ferrante
  • Alberto Ferruccio Piccinni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)


The presence of ancient underground urban drainage system in cities entails serious risks to public safety. Often, the presence of these hydraulic structures is forgotten and their projects missing in public offices. In this work the critical issues of the old urban drainage system of Corato, a city in the south of Italy, are described. In particular, through a targeted identification, acquisition and spatialization of key variables, and subsequent processing in a GIS software, a method for risk assessment has been provided. The choice of key variables was carried out through visual inspections and acquisition of “historical criticalities” of the urban drainage system. Finally, this paper presents a methodology, calibrated on the old city of Corato, to evaluate the risk caused by the presence of this hydraulic infrastructure, in order to help technicians to define the correct order of operations to be carried out.


Risk map Structural engineering Risk assessment Hydraulic infrastructure protection Urban drainage system 


  1. 1.
    Saegrov, S., Schilling, W.: Computer Aided Rehabilitation of Sewer Water Networks ASCE Global Solutions for Urban Drainage (2002)Google Scholar
  2. 2.
    Antognoli, L., Pelagalli, L., Bianchi, E., Maxima, C.: Un recente intervento di restauro nel tratto sottostante il Giano del Velabro nel 2013. Bullettino della Commissione Archeologica Comunale di Roma numero unico annuale, 322–325 (2014)Google Scholar
  3. 3.
    Filetici, M.G., Scaroina, L.: Sicurezza e conoscenza: un binomio indispensabile per la conservazione. La distrazione della conservazione - Il rischio idrogeologico dell’area archeologica centrale di Roma. In: Bianchi, E. (ed.) La Cloaca Maxima e i sistemi fognari di Roma dall’antichità ad oggi, pp. 231–239. Palombi Editore, Roma (2014)Google Scholar
  4. 4.
    D’Elia, E.: Sulle origini storiche e sull’evoluzione della fognatura di Napoli. L’Acqua, Associazione Idrotecnica Italiana, pp. 19–41, Novembre/Dicembre 2015Google Scholar
  5. 5.
    Serpente, R.F.: Understanding the Modes of Failure for Sewers in William A. Macaits. Urban Drainage Rehabilitation Programs and Techniques. ASCE, USA (1994)Google Scholar
  6. 6.
    Regueiro-Picallo, M., Naves, J., Anita, J., Puertas, J., Suarez, J.: Experimental and numerical analysis of egg-shaped sewer pipes flow performance. Water 8(12), 587 (2016)CrossRefGoogle Scholar
  7. 7.
    Randrup, T., McPherson, B., Gregory, E., Costello, E., Laurence, R.: Tree root intrusion in sewer systems: review of extent and costs. J. Infrastruct. Syst. 7(1), 26 (2001)CrossRefGoogle Scholar
  8. 8.
    Blanksby, J., Boogard F.C.: Modelling and mapping of urban storm water flooding - using simple approaches in a process of triage. Skintwater (2010)Google Scholar
  9. 9.
    Granata, F., Gargano, R., de Marinis, G.: Support vector regression for rainfall-runoff modeling in urban drainage: a comparison with the EPA’s storm water management model. Water 8(3) (2016)Google Scholar
  10. 10.
    Ryu, J., Butler, D., Makropoulos, C.: Assessing sewer flood risk. In: Proceedings of the 2nd IMA International Conference on Flood Risk Assessement, Plymouth, UK (2007)Google Scholar
  11. 11.
    Abraham, D.M., Wirahadikusumah, R.: Development of prediction models for sewer deterioration. In: Lacasse, M.A., Vanier, D.J. (eds.) Durability of Building Materials and Components, pp. 1257–1267. Institute for Research in Construction - National Research Council of Canada, Ottawa (1999)Google Scholar
  12. 12.
    Alani, A.M., Faramazi, A.: Predicting the probability of failure of cementious sewer pipes using stochastic finite element method. Int. J. Environ. Res. Public Health 12, 6641–6656 (2015)CrossRefGoogle Scholar
  13. 13.
    Nunes Correia, F., Francisco, et al.: Flood hazard assessment and management: interface with the public. Water Resour. Manage. 12(3), 209–227 (1998)Google Scholar
  14. 14.
    Fenner, R.A.: Approaches to sewer maintenance: a review. Urban Water 2(4), 343–356 (2000)Google Scholar
  15. 15.
    Ugarelli, R., Di Federico, V., Sveinung, S.: Risk Based asset management for wastewater systems. In: NOVATECH, p. 917 (2007)Google Scholar
  16. 16.
    Johanses, N.B., et al.: Risk assessment of sewer systems. In: NOVATECH, p. 925 (2007)Google Scholar
  17. 17.
    Büchele, B., et al.: Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks. Nat. Hazards Earth Syst. Sci. 6(4), 485–503 (2006)CrossRefGoogle Scholar
  18. 18.
    Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F.: Improving the ANN classification accuracy of landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a river basin. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 420–432. Springer, Cham (2016). doi: 10.1007/978-3-319-42108-7_32 CrossRefGoogle Scholar
  19. 19.
    Cova, T.J.: GIS in emergency management. Geograph. Inf. Syst. 2, 845–858 (1999)Google Scholar
  20. 20.
    Ward, B., Savic, D.A.: A multi-objective optimisation model for sewer rehabilitation considering critical risk of failure. Water Sci. Technol. 66, 2410–2417 (2013)CrossRefGoogle Scholar
  21. 21.
    Mugume, S.N., et al.: A global analysis approach for investigating structural resilience in urban drainage systems. Water Res. 81, 15–26 (2015)CrossRefGoogle Scholar
  22. 22.
    Mair, M., et al.: GIS-based applications of sensitivity analysis for sewer models. Water Sci. Technol. 65(7), 1215 (2012)CrossRefGoogle Scholar
  23. 23.
    Halfawy, M., Dridi, L., Baker, S.: Integrated decision support system for optimal renewal planning of sewer networks. J. Comput. Civil Eng. 22(6), 360–372 (2008)CrossRefGoogle Scholar
  24. 24.
    Catasto Cavità Artificiali Pugliesi. Il progetto. Last accessed 26 Nov 2016
  25. 25.
    Fernández, D.S., Lutz, M.A.: Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng. Geol. 111(1), 90–98 (2010)CrossRefGoogle Scholar
  26. 26.
    Nicotera, G., Abruzzini, E.: Il sovralzamento della falda freatica di Corato (Bari). Geo-tecnica, 69–77 (1962)Google Scholar
  27. 27.
    Ferrante, R.: Cunicoli o fogne bianche? L’affascinante sottosuolo coratino a un bivio. Lo Stradone - Il Giornale di Corato, 22–24, Aprile 2016Google Scholar
  28. 28.
    Vernice, S.: Una tragedia sfiorata - CORATO: il dissesto e la voragine in via Asproni forse provocati dai lavori del cinema Kursaal. La Gazzetta del Mezzogiorno 20 Luglio 2006, 16 (2006)Google Scholar
  29. 29.
    Thornhill, R., Wildbore, P.: Sewer Defect Codes - Origin And Destination. Underground Construction. U-Tech: Underground Technology Cutting Edge Technical Information for Utility Construction & Rehabilitation, pp. 32–36 (2005)Google Scholar
  30. 30.
    Cherubini, C., Romanazzi, E.: The problem of groundwater rise in Corato. Giornale di Geologia Applicata, 383–386 (2005)Google Scholar
  31. 31.
    Portoghese, I., D’Agostino, D., Giordano, R., Scardigno, A., Apollonio, C., Vurro, M.: An integrated modelling tool to evaluate the acceptability of irrigation constraint measures for groundwater protection. Environ. Modell. Softw. 46, 90–103 (2013)CrossRefGoogle Scholar
  32. 32.
    Giordano, R., Milella, P., Portoghese, I., Vurro, M., Apollonio, C., D’Agostino, D., Lamaddalena, N., Scardigno, A., Piccinni, A.F.: An innovative monitoring system for sustainable management of groundwater resources: objectives, stakeholder acceptability and implementation strategy. In: Proceedings of Environmental Energy and Structural Monitoring Systems (EESMS), IEEE Workshop, Taranto, Italy, pp. 32–37 (2010)Google Scholar
  33. 33.
    Montoya, L.: Geo-data acquisition through mobile GIS and digital video: an urban disaster management perspective. Environ. Modell. Softw. 18(10), 869–876 (2003)CrossRefGoogle Scholar
  34. 34.
    Jiang, C., Sheng, J., Zhang, G., Xu, G.: Calculation of failure probability of hydraulic structures for rural hydropower. In: Proceedings of 2012 International Conference on Modern Hydraulic Engineering. Procedia Eng. 28, 161–164 (2012)Google Scholar
  35. 35.
    Apulian Regional Authority Watershed. Piano Stralcio di Assetto Idrogeologico (PAI). (Italian only). Last accessed 02 Feb 2017

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di ChimicaPolitecnico di BariBariItaly

Personalised recommendations