Resilience Modification and Dynamic Risk Assessment in Hybrid Systems: Study Cases in Underground Settlements of Murgia Edge (Apulia, Southern Italy)

  • Roberta PellicaniEmail author
  • Ilenia Argentiero
  • Alessandro Parisi
  • Maria Dolores Fidelibus
  • Giuseppe Spilotro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)


The resilience of natural system, not affected by anthropic modifications, can be altered by many natural drivers (e.g. geological conditions, climate, etc.) and their spatial modifications. Over time, human activities have modified many natural systems generating “hybrid systems” (both human and natural), in which natural and anthropic drivers changed their vulnerability, in order to decrease or increase their resilience. Potential emerging signals of the resilience variation are difficult to assess because of wrong risk perception and lack of communication. In this context of soft crisis, it would be appropriate a dynamic risk assessment of hybrid systems in order to avoid disaster when hazardous phenomena occur, but it is a quite complex issue. The aim is to define the relationship between the hybrid system resilience, referring to study cases located in Apulia region, and some emerging signals and their records over time. Furthermore, the aim is to understand how human and natural drivers were involved in the shift.


Hybrid system Soft crisis Resilience Risk Urban settlements Instability Emerging signals 


  1. 1.
    Glade, T., Anderson, M., Crozier, M.J.: Landslide Hazard and Risk. Wiley, Chichester (2005)CrossRefGoogle Scholar
  2. 2.
    Fell, R.: Landslide risk assessment and acceptable risk. Can. Geotech. J. 31, 261–272 (1994)CrossRefGoogle Scholar
  3. 3.
    AGS (Australian Geomechanics Society): Landslide risk management concepts and guidelines. Aust. Geomech. 35, 49–92 (2000)Google Scholar
  4. 4.
    Dai, F.C., Lee, C.F., Ngai, Y.Y.: Landslide risk assessment and management: an overview. Eng. Geol. 64, 65–87 (2002)CrossRefGoogle Scholar
  5. 5.
    Holling, C.S.: Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4, 1–23 (1973)CrossRefGoogle Scholar
  6. 6.
    Scheffer, M.: Critical Transitions in Nature and Society. Princeton University Press, Princeton (2009)Google Scholar
  7. 7.
    UNISDR (United Nations International Strategy for Disaster Reduction): Terminology on Disaster Risk Reduction, Geneva, Switzerland (2009)Google Scholar
  8. 8.
    Siegel, W., Schraagen, J.M.: Developing resilience signals for the Dutch railway system. In: 5th REA Symposium on Managing Trade Offs, Soesterberg, Netherlands, pp. 191–196, 24–27 June 2013Google Scholar
  9. 9.
    Cook, R., Rasmussen, J.: “Going solid”: a model of system dynamics and consequences for patient safety. Qual. Saf. Health Care 14(2), 130–134 (2005). doi: 10.1136/qshc.2003.009530 CrossRefGoogle Scholar
  10. 10.
    Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009). doi: 10.1038/nature08227 CrossRefGoogle Scholar
  11. 11.
    Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B.: Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)CrossRefGoogle Scholar
  12. 12.
    Vinson, S.P.: Neolithic pottery of Inland Apulia: field work and speculation. Am. J. Archaeol. 82(4), 449–459 (1978)CrossRefGoogle Scholar
  13. 13.
    Spilotro, G., Fidelibus, M.D., Fidelibus, C., Zinco, M.R.: Lithological and geotechnical features of the calcarenites in the west of the Murgian platform. In: Anagnostopoulos, A., et al. (eds.) Proceedings of the International Symposium on Hard Soils - Soft Rocks, Athens, Balkema, Rotterdam, pp. 293–300, September 1993Google Scholar
  14. 14.
    Spilotro, G., Qeraxhiu, L., Pellicani, R., Argentiero, I.: Caratteristiche tecniche delle rocce calcarenitiche e loro variabilità in relazione all’ambiente di esposizione, pp. 81–84. Laboratorio di pratiche della conoscenza nei Sassi di Matera, Ediz. Archivia (2015)Google Scholar
  15. 15.
    Spilotro, G., Fidelibus, M.D., Pellicani, R., Qeraxhiu, L., Argentiero, I., Pergola, G.: Il patrimonio architettonico di Matera e i matetiali naturali da costruzione: nel tufo e col tufo: Caratterizzazione tecnica delle calcareniti e variazioni per condizioni ambientali. Geologia Territorio Ambiente 25, 10–24 (2016)Google Scholar
  16. 16.
    Ciantia, M.O., Castellanza, R., Crosta, G.B., Hueckel, T.: Effects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks. Eng. Geol. 184, 1–18 (2015)CrossRefGoogle Scholar
  17. 17.
    Cotecchia, V., Calò, G., Spilotro, G.: Caratterizzazione geolitologica e tecnica delle calcareniti pugliesi. 3° Conv. Naz. Attività estrattiva dei minerali di 2a categoria, Bari, 17–19 January1983Google Scholar
  18. 18.
    Grassi, D., Grimaldi, S., Simeone, V.: Localizzazione e problemi di stabilità dei siti rupestri dell’area pugliese. Giornale di Geologia Applicata 4, 65–72 (2006)Google Scholar
  19. 19.
    Wong, H.N., Ho, K.K.S., Chan, Y.C.: Assessment of consequence of landslides. In: Cruden, R., Fell, R. (eds.) Landslide Risk Assessment, pp. 111–149. Balkema, Rotterdam (1997)Google Scholar
  20. 20.
    Fatiguso, F., De Fino, M., Cantatore, E., Caponio, V.: Resilience of historic built environments: inherent qualities and potential strategies. In: International High-Performance Built Environments Conference – A Sustainable Built Environment Conference. Procedia Engineering (2017)Google Scholar
  21. 21.
    Alexander, D.E.: Resilience and disaster risk reduction: an etymological journey. Nat. Hazards Earth Syst. Sci. 13, 2707–2716 (2013). doi: 10.5194/nhess-13-2707-2013 CrossRefGoogle Scholar
  22. 22.
    Pescaroli, G., Alexander, D.: Critical infrastructure, panarchies and the vulnerability paths of cascading disasters. Natural Hazards, 1–18 (2016). doi: 10.1007/s11069-016-2186-3
  23. 23.
    Pellicani, R., Spilotro, G., Gutiérrez, F.: Susceptibility mapping of instability related to shallow mining cavities in a built-up environment. Eng. Geol. 217, 81–88 (2017). doi: 10.1016/j.enggeo.2016.12.011 CrossRefGoogle Scholar
  24. 24.
    Nardone, D.: Notizie storiche sulla città di Gravina (455–1860). Ed. Gravina, L. Attolini (1922)Google Scholar
  25. 25.
    Capuzzi, L.: Gravina: un paese del Sud. Quaderno di storia urbanistica n.1 (1981)Google Scholar
  26. 26.
    Barnaba, F., Caggiano, T., Castorani, A., Delle Rose, M., Di Santo, A.R., Dragone, V., Fiore, A., Limoni, P.P., Parise, M., Santaloia, F.: Sprofondamenti connessi a cavità antropiche nella regione Puglia. 2° International Workshop “I Sinkholes: gli sprofondamenti catastrofici nell’ambiente naturale ed in quello antropizzato”, session 5, pp. 635–672 (2009)Google Scholar
  27. 27.
    Fidelibus, M.D., Pellicani, R., Argentiero, I., Spilotro, G.: The geoheritage of the water intake of Triglio ancient aqueduct (Apulia Region, Southern Italy): a lesson of advanced technology insensitive to climate changes from an ancient geosite. Geoheritage. doi: 10.1007/s12371-017-0238-z

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Roberta Pellicani
    • 1
    Email author
  • Ilenia Argentiero
    • 1
  • Alessandro Parisi
    • 2
  • Maria Dolores Fidelibus
    • 2
  • Giuseppe Spilotro
    • 1
  1. 1.Department of European and Mediterranean Cultures, DiCEMUniversity of BasilicataMateraItaly
  2. 2.Department of Civil, Environmental, Land, Building Engineering and ChemistryPolytechnic University of BariBariItaly

Personalised recommendations