Skip to main content

Comparison of Deep Learning and Support Vector Machine Learning for Subgroups of Multiple Sclerosis

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10405))

Included in the following conference series:

Abstract

Machine learning methods are frequently used for data sets in many fields including medicine for purposes of feature extraction and pattern recognition. This study includes lesion data obtained from Magnetic Resonance images taken in three different years and belonging to 120 individuals (with 76 RRMS, 6 PPMS, 38 SPMS). Many alternative methods are used nowadays to be able to find out the strong and distinctive features of Multiple Sclerosis based on MR images. Deep learning has the working capacity pertaining to a much wider scaled space (120 \(\times \) 228), less dimension (50 \(\times \) 228) (also referred to as distinctive) feature space and SVM (120 \(\times \) 228). Deep learning has formed a more skillful system in the classification of MS subgroups by working with fewer sets of features compared to SVM algorithm. Deep learning algorithm has a better accuracy rate in comparing the MS subgroups compared to multiclass SVM algorithm kernel types which are among the conventional machine learning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duncan, I.D., Franklin, R.J.: Myelin Repair and Neuroprotection in Multiple Sclerosis, pp. 23–47. Springer Science and Business Media, Heidelberg (2012)

    Google Scholar 

  2. Murray, T.J., Saunders, C., Holland, N.J.: Multiple Sclerosis: A Guide for the Newly Diagnosed, pp. 1–39. Demos Medical Publishing, New York (2012)

    Google Scholar 

  3. Scalfari, A., Lederer, C., Daumer, M., Nicholas, R., Ebers, G.C., Muraro, P.A.: The relationship of age with the clinical phenotype in multiple sclero sis. Multiple Scler. J. 22(13), 1750–1758 (2016)

    Article  Google Scholar 

  4. McAlpine, D., Compston, A.: McAlpine’s Multiple Sclerosis, pp. 2–10. Elsevier Health Sciences, Amsterdam (2005)

    Google Scholar 

  5. Hirst, C., Ingram, G., Swingler, R., Compston, D.A.S., Pickersgill, T., Robertson, N.P.: Change in disability in patients with multiple sclerosis: a 20-year prospective population-based analysis. J. Neurol. Neurosurg. Psychiatry 79(10), 1137–1143 (2008)

    Article  Google Scholar 

  6. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: IEEE 11th International Symposium Biomedical Imaging (ISBI), pp. 1015–1018 (2014)

    Google Scholar 

  7. Xie, R., Quitadamo, A., Cheng, J., Shi, X.: A predictive model of gene expression using a deep learning framework. In: IEEE International Conference Bioinformatics and Biomedicine (BIBM), pp. 676–681 (2016)

    Google Scholar 

  8. Wang, A., Wang, J., Lin, H., Zhang, J., Yang, Z., Xu, K.: Biomedical event extraction based on distributed representation and deep learning. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), p. 775 (2016)

    Google Scholar 

  9. Sarraf, S., Tofighi, G.: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. In: Future Technologies Conference, pp. 816–820 (2016)

    Google Scholar 

  10. Petersson, H., Gustafsson, D., Bergstrom, D.: Hyperspectral image analysis using deep learning: a review. In: 2016 6th International Conference Image Processing Theory Tools and Applications (IPTA), pp. 1–6 (2016)

    Google Scholar 

  11. Brosch, T., Yoo, Y., Li, D.K.B., Traboulsee, A., Tam, R.: Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 462–469. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_58

    Google Scholar 

  12. Brosch, T., Tang, L.Y., Yoo, Y., Li, D.K., Traboulsee, A., Tam, R.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5), 1229–1239 (2016)

    Article  Google Scholar 

  13. Karaca, Y., Zhang, Y., Cattani, C., Ayan, U.: The differential diagnosis of Multiple Sclerosis using convex combination of infinite kernels. CNS Neurol. Disord. Drug Targets 16(1), 36–43 (2017)

    Article  Google Scholar 

  14. Karaca, Y., Osman, O., Karabudak, R.: Linear modeling of multiple sclerosis and its subgroups. Turk. J. Neurol. 21, 7–13 (2015)

    Article  Google Scholar 

  15. Rajan, S.S.: MRI A Conceptual Overview. Library of Congress Catalog in Publication Data. Springer, New York (1998)

    Google Scholar 

  16. Mamoshina, P., Vieira, A., Putin, E., Zhavoronkov, A.: Applications of deep learning in biomedicine. Mol. Pharm. 13(5), 1445–1454 (2016)

    Article  Google Scholar 

  17. Deng, L., Yu, D.: Deep learning methods and applications. Found. Trends Sig. Process. 7(3–4), 230–239 (2014)

    MathSciNet  Google Scholar 

  18. Graupe, D.: Deep Learning Neural Networks: Design and Case Studies, pp. 23–53. World Scientific Publishing, Singapore (2016)

    Google Scholar 

  19. Galas, D.J., Dewey, T.G., Kunert-Graf, J., Sakhanenko, N.A.: Expansion of the Kull back-Leibler divergence, and a new class of information metrics. Entropy Inf. Theor. MDPI 6(2), 8 (2017)

    Google Scholar 

  20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, pp. 155–194. MIT Press, Cambridge (2016)

    Google Scholar 

  21. Suthaharan, S.: Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning, vol. 36. Springer (2015)

    Google Scholar 

  22. Han, J., Kamber, M., Pei, J.: Data Mining Concepts and Techniques, 3rd edn., pp. 408–413. Elsevier, Amsterdam (2012)

    Google Scholar 

  23. Amari, S.I., Wu, S.: Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 12(6), 783–789 (1999)

    Article  Google Scholar 

  24. Fung, G.M., Mangasarian, O.L.: Multicategory proximal support vector machine classifiers. Mach. Learn. 1–21 (2004)

    Google Scholar 

  25. Karaca, Y., Hayta, Ş., Karabudak, R.: Case study application for C-support vector classification: the estimation of MS subgroup classification with selected kernels and parameters. Eur. J. Pure Appl. Math. 9(2), 196–215 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeliz Karaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Karaca, Y., Cattani, C., Moonis, M. (2017). Comparison of Deep Learning and Support Vector Machine Learning for Subgroups of Multiple Sclerosis. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10405. Springer, Cham. https://doi.org/10.1007/978-3-319-62395-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62395-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62394-8

  • Online ISBN: 978-3-319-62395-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics