Lack of Data: Is It Enough Estimating the Coffee Rust with Meteorological Time Series?

  • David Camilo CorralesEmail author
  • German Gutierrez
  • Jhonn Pablo RodriguezEmail author
  • Agapito Ledezma
  • Juan Carlos CorralesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)


Rust is the most economically important coffee disease in the world. Coffee rust epidemics have affected a number of countries including: Colombia, Brazil and Central America. Researchers try to predict the Incidence Rate of Rust (IRR) through supervised learning models, nevertheless the available IRR measurements are few, then the data set does not represent a sample trustworthy of the population. In this paper we use Cubic Spline Interpolation algorithm to increase the measurements of Incidence Rate of Rust and subsequently we construct different subsets of meteorological time series: (i) Daily meteorology, (ii) Meteorological variation, and (iii) Previous meteorology using M5 Regression Tree, Support Vector Regression and Multi-Layer Perceptron. Previous meteorology with Multi-Layer Perceptron have shown better results in measures as Pearson Coefficient Correlation of 0.81 and Mean Absolute Error \(=\) 7.41%.


Coffee rust Incidence rate of rust Regression models Time series Interpolation 



We thank Centro Nacional de Investigaciones de Café (Cenicafé) and Mr. Alvaro Gaitan Bustamante, PhD, for his knowledge. We also thank the Telematics Engineering Group (GIT) of the University of Cauca, and the Control Learning and Systems Optimization Group (CAOS) of the Carlos III University of Madrid, for the technical support. Finally, this work has been partially supported by AgroCloud project of the RICCLISA Program, and the Spanish Government (under projects TRA2011-29454-C03-03 and TRA2015-63708-R), and Colciencias for PhD scholarship granted to MsC. David Camilo Corrales.


  1. 1.
    Arcila, J., Farfan, F., Moreno, A., Salazar, L., Hincapie, E.: Sistemas de produccion de cafe en colombia. Cientific bot036, Cenicafe (2007)Google Scholar
  2. 2.
    Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., Läderach, P., Anzueto, F., Hruska, A.J., Morales, C.: The coffee rust crises in colombia and central america (2008–2013): impacts, plausible causes and proposed solutions. Food Secur. 7(2), 303–321 (2015)CrossRefGoogle Scholar
  3. 3.
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)zbMATHGoogle Scholar
  4. 4.
    Carrizosa, E., Olivares-Nadal, A.V., Ramírez-Cobo, P.: Time series interpolation via global optimization of moments fitting. Eur. J. Oper. Res. 230(1), 97–112 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cintra, M.E., Meira, C.A.A., Monard, M.C., Camargo, H.A., Rodrigues, L.H.A.: The use of fuzzy decision trees for coffee rust warning in Brazilian crops. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 1347–1352, November 2011Google Scholar
  6. 6.
    Corrales, D.C., Corrales, J.C., Figueroa-Casas, A.: Towards detecting crop diseases and pest by supervised learning. Ingeniería y Universidad 19, 207–228 (2015)CrossRefGoogle Scholar
  7. 7.
    Corrales, D.C., Figueroa, A., Ledezma, A., Corrales, J.C.: An empirical multi-classifier for coffee rust detection in Colombian crops. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 60–74. Springer, Cham (2015). doi: 10.1007/978-3-319-21404-7_5 CrossRefGoogle Scholar
  8. 8.
    Corrales, D.C., Casas, A.F., Ledezma, A., Corrales, J.C.: Two-level classifier ensembles for coffee rust estimation in Colombian crops. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 7, 41–59 (2016)CrossRefGoogle Scholar
  9. 9.
    Corrales, D.C., Ledezma, A., Peña, A.J., Hoyos, J., Figueroa, A., Corrales, J.C.: A new dataset for coffee rust detection in Colombian crops base on classifiers. Sistemas y Telemática 12(29), 9–23 (2014)CrossRefGoogle Scholar
  10. 10.
    Corrales, D.C., Peña, A.J., Leõn, C., Figueroa, A., Corrales, J.C.: Early warning system for coffee rust disease based on error correcting output codes: a proposal. Revista IngenierÃas Universidad de MedellÃn 13, 57–64 (2014)Google Scholar
  11. 11.
    Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gunn, S.R.: Support vector machines for classification and regression. Technical report (1998)Google Scholar
  13. 13.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  14. 14.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1998)zbMATHGoogle Scholar
  15. 15.
    Lasso, E., Thamada, T.T., Meira, C.A.A., Corrales, J.C.: Graph patterns as representation of rules extracted from decision trees for coffee rust detection. In: Garoufallou, E., Hartley, R.J., Gaitanou, P. (eds.) MTSR 2015. CCIS, vol. 544, pp. 405–414. Springer, Cham (2015). doi: 10.1007/978-3-319-24129-6_35 CrossRefGoogle Scholar
  16. 16.
    Luaces, O., Rodrigues, L.H.A., Meira, C.A.A., Bahamonde, A.: Using nondeterministic learners to alert on coffee rust disease. Expert Syst. Appl. 38(11), 14276–14283 (2011)Google Scholar
  17. 17.
    Luaces, O., Rodrigues, L.H.A., Alves Meira, C.A., Quevedo, J.R., Bahamonde, A.: Viability of an alarm predictor for coffee rust disease using interval regression. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6097, pp. 337–346. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13025-0_36 CrossRefGoogle Scholar
  18. 18.
    Mohanty, P.K., Reza, M., Kumar, P., Kumar, P.: Implementation of cubic spline interpolation on parallel skeleton using pipeline model on CPU-GPU cluster. In: 2016 IEEE 6th International Conference on Advanced Computing (IACC), pp. 747–751, February 2016Google Scholar
  19. 19.
    Nutman, F.J., Roberts, F.M., Clarke, R.T.: Studies on the biology of Hemileia vastatrix Berk and Br. Trans. Br. Mycol. Soc. 46(1), 27–44 (1963)CrossRefGoogle Scholar
  20. 20.
    Perez-Ariza, C., Nicholson, A., Flores, M.: Prediction of coffee rust disease using Bayesian networks, pp. 259–266. DECSAI University of Granada (2012)Google Scholar
  21. 21.
    Quinlan, R.J.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)Google Scholar
  22. 22.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  23. 23.
    Rivillas, C., Serna, C., Cristancho, M., Gaitan, A.: La Roya del Cafeto en Colombia. Impacto, manejo y costos de control. Cientific bot036, Cenicafe (2011)Google Scholar
  24. 24.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Vapnik, V., Golowich, S.E., Smola, A.J.: Support vector method for function approximation, regression estimation and signal processing. In: Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 281–287. MIT Press, Cambridge (1997)Google Scholar
  26. 26.
    Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)zbMATHGoogle Scholar
  27. 27.
    Zivot, E., Wang, J.: Modeling Financial Time Series with S-PLUS®. IFIP. Springer, New York (2007). doi: 10.1007/978-0-387-32348-0 zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Telematics Engineering GroupUniversity of CaucaPopayánColombia
  2. 2.Computer Science DepartmentCarlos III University of MadridLeganesSpain

Personalised recommendations