Skip to main content

Genetic Estimation of Iterated Function Systems for Accurate Fractal Modeling in Pattern Recognition Tools

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10404))

Included in the following conference series:

Abstract

In this paper, we describe an algorithm to estimate the parameters of Iterated Function System (IFS) fractal models. We use IFS to model Speech and Electroencephalographic signals and compare the results. The IFS parameters estimation is performed by means of a genetic optimization approach. We show that the estimation algorithm has a very good convergence to the global minimum. This can be successfully exploited by pattern recognition tools. However, the set-up of the genetic algorithm should be properly tuned. In this paper, besides the optimal set-up description, we describe also the best tradeoff between performance and computational complexity. To simplify the optimization problem some constraints are introduced. A comparison with suboptimal algorithms is reported. The performance of IFS modeling of the considered signals are in accordance with known measures of the fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1977)

    Google Scholar 

  2. Jaros, P., Maslanka, L., Strobin, F.: Algorithms generating images of attractors of generalized iterated function systems. Numer. Algorithms 73(2), 477–499 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Drakopoulos, V., Bouboulis, P., Theodoridis, S.: Image compression using affine fractal interpolation on rectangular lattices. Fractals World Sci. 14, 1–11 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Akhtar, N., Prasad, M.G.P.: Graph-directed coalescence hidden variable fractal interpolation functions. Appl. Math. 07, 1–11 (2016)

    Article  Google Scholar 

  5. Abenda, S.: Inverse problem for one-dimensional fractal measures via iterated function systems and the moment method. Inverse Probl. 6(6), 885 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sarafopoulos, A., Buxton, B.: Resolution of the inverse problem for iterated function systems using evolutionary algorithms. In: IEEE International Conference on Evolutionary Computation, CEC 2006, Part of WCCI 2006, Vancouver, BC, Canada, 16–21 July 2006, pp. 1071–1078 (2006)

    Google Scholar 

  7. Dimri, V.P., Srivastava, R.P., Vedanti, N.: Fractal Models in Exploration Geophysics Applications to Hydrocarbon Reservoirs - Handbook of Geophysical Exploration Seismic Exploration, vol. 41, 1st edn. Elsevier Science, San Diego (2012)

    Google Scholar 

  8. Mazel, D.S., Hayes, M.H.: Using iterated function systems to model discrete sequences. IEEE Trans. Signal Process. 40(7), 1724–1734 (1992)

    Article  MATH  Google Scholar 

  9. López, N., Rabanal, P., Rodríguez, I., Rubio, F.: A formal method for parallel genetic algorithms\(^1\). In: Proceedings of the International Conference on Computational Science, ICCS 2015, Computational Science at the Gates of Nature, Reykjavík, Iceland, 1–3 June 2014, pp. 2698–2702 (2015)

    Google Scholar 

  10. Arutyunov, A.V., Vartapetov, S.A., Zhukovskiy, S.E.: Some properties and applications of the hausdorff distance. J. Optim. Theory Appl. 171(2), 527–535 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barnsley, M.F.: Fractals Everywhere. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  12. Honda, H., Haseyama, M., Kitajima, H., Matsumoto, S.: Extension of the collage theorem. In: Proceedings 1997 International Conference on Image Processing, ICIP 1997, Santa Barbara, California, USA, 26–29 October 1997, pp. 306–309 (1997)

    Google Scholar 

  13. Øien, G.E., Baharav, Z., Lepsøy, S., Karnin, E.D.: A new improved collage theorem with applications to multiresolution fractal image coding. In: Proceedings of ICASSP 1994: IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, South Australia, Australia, 19–22 April 1994, pp. 565–568 (1994)

    Google Scholar 

  14. Wadströmer, N.: An automatization of Barnsley’s algorithm for the inverse problem of iterated function systems. IEEE Trans. Image Process. 12(11), 1388–1397 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  16. Maragos, P., Potamianos, A.: Fractal dimensions of speech sounds: computation and application to automatic speech recognitiona. J. Acoust. Soc. Am. 105(3), 1925–1932 (1999)

    Article  Google Scholar 

  17. Chan, K.Y., Fogarty, T.C., Aydin, M.E., Ling, S., Iu, H.H.C.: Genetic algorithms with dynamic mutation rates and their industrial applications. Int. J. Comput. Intell. Appl. 7(2), 103–128 (2008)

    Article  MATH  Google Scholar 

  18. CMU: CMU artic database. http://www.festvox.org/cmu_arctic/index.html/

  19. UCI: UCI KDD archive. http://kdd.ics.uci.edu/databases/eeg/eeg.html

  20. Teplan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(12), 1–11 (2002)

    Google Scholar 

  21. Paramanathan, P., Uthayakumar, R.: An algorithm for computing the fractal dimension of waveforms. Appl. Math. Comput. 195(2), 598–603 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Truong, Q.D.K., Ha, V.Q., Toi, V.V.: Higuchi fractal properties of onset epilepsy electroencephalogram. Comp. Math. Methods Med. 2012, 461426:1–461426:6 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Cuzzocrea, A.: Privacy and security of big data: current challenges and future research perspectives. In: Proceedings of the First International Workshop on Privacy and Security of Big Data, PSBD@CIKM 2014, Shanghai, China, 7 November 2014, pp. 45–47 (2014)

    Google Scholar 

  24. Cuzzocrea, A., Matrangolo, U.: Analytical synopses for approximate query answering in OLAP environments. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 359–370. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30075-5_35

    Chapter  Google Scholar 

  25. Cuzzocrea, A., Fortino, G., Rana, O.F.: Managing data and processes in cloud-enabled large-scale sensor networks: state-of-the-art and future research directions. In: 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2013, Delft, Netherlands, 13–16 May 2013, pp. 583–588 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Cuzzocrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cuzzocrea, A., Mumolo, E., Grasso, G.M. (2017). Genetic Estimation of Iterated Function Systems for Accurate Fractal Modeling in Pattern Recognition Tools. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics