Skip to main content

Hardness and Structural Results for Half-Squares of Restricted Tree Convex Bipartite Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10392))

Included in the following conference series:

Abstract

Let \(B=(X,Y,E)\) be a bipartite graph. A half-square of B has one color class of B as vertex set, say X; two vertices are adjacent whenever they have a common neighbor in Y. Every planar graph is half-square of a planar bipartite graph, namely of its subdivision. Until recently, only half-squares of planar bipartite graphs (the map graphs) have been investigated, and the most discussed problem is whether it is possible to recognize these graphs faster and simpler than Thorup’s \(O(n^{120})\) time algorithm.

In this paper, we identify the first hardness case, namely that deciding if a graph is a half-square of a balanced bisplit graph is NP-complete. (Balanced bisplit graphs form a proper subclass of star convex bipartite graphs.) For classical subclasses of tree convex bipartite graphs such as biconvex, convex, and chordal bipartite graphs, we give good structural characterizations of their half-squares that imply efficient recognition algorithms. As a by-product, we obtain new characterizations of unit interval graphs, interval graphs, and of strongly chordal graphs in terms of half-squares of biconvex bipartite, convex bipartite, and chordal bipartite graphs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thorup did not give the running time explicitly, but it is estimated to be roughly \(O(n^{120})\) with n being the vertex number of the input graph.

References

  1. Brandenburg, F.J.: On 4-map graphs and 1-planar graphs and their recognition problem. ArXiv (2015). http://arxiv.org/abs/1509.03447

  2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  3. Chen, Z.-Z.: Approximation algorithms for independent sets in map graphs. J. Algorithms 41, 20–40 (2001). doi:10.1006/jagm.2001.1178

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138 (2002). doi:10.1145/506147.506148

    Article  MathSciNet  MATH  Google Scholar 

  5. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Fixed-parameter algorithms for \((k, r)\)-center in planar graphs and map graphs. ACM Trans. Algorithms 1(1), 33–47 (2005). doi:10.1145/1077464.1077468

    Article  MathSciNet  MATH  Google Scholar 

  6. Demaine, E.D., Hajiaghayi, M.T.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2007). doi:10.1093/comjnl/bxm033

    Article  Google Scholar 

  7. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–189 (1983). doi:10.1016/0012-365X(83)90154-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms 2012 (SODA 2012), pp. 1563–1575 (2012)

    Google Scholar 

  9. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canad. J. Math. 16, 539–548 (1964). doi:10.4153/CJM-1964-055-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  12. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM J. Comput. 4, 713–717 (1981). doi:10.1137/0210054

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, W., Liu, T., Wang, C., Ke, X.: Feedback vertex sets on restricted bipartite graphs. Theoret. Comput. Sci. 507, 41–51 (2013). doi:10.1016/j.tcs.2012.12.021

    Article  MathSciNet  MATH  Google Scholar 

  14. Kou, L.T., Stockmeyer, L.J., Wong, C.-K.: Covering edges by cliques with regard to keyword conflicts and intersection graphs. Comm. ACM 21, 135–139 (1978). doi:10.1145/359340.359346

    Article  MathSciNet  MATH  Google Scholar 

  15. Lau, L.C.: Bipartite roots of graphs. ACM Trans. Algorithms 2(2), 178–208 (2006). doi:10.1145/1150334.1150337. Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 952–961

    Article  MathSciNet  MATH  Google Scholar 

  16. Lau, L.C., Corneil, D.G.: Recognizing powers of proper interval, split, and chordal graphs. SIAM J. Discrete Math. 18(1), 83–102 (2004). doi:10.1137/S0895480103425930

    Article  MathSciNet  MATH  Google Scholar 

  17. Le, V.B., Peng, S.-L.: On the complete width and edge clique cover problems. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 537–547. Springer, Cham (2015). doi:10.1007/978-3-319-21398-9_42

    Chapter  Google Scholar 

  18. Lehel, J.: A characterization of totally balanced hypergraphs. Discrete Math. 57, 59–65 (1985). doi:10.1016/0012-365X(85)90156-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, T.: Restricted bipartite graphs: comparison and hardness results. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 241–252. Springer, Cham (2014). doi:10.1007/978-3-319-07956-1_22

    Google Scholar 

  20. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput. 16, 854–879 (1987). doi:10.1137/0216057

    Article  MathSciNet  MATH  Google Scholar 

  21. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  22. Mnich, M., Rutter, I., Schmidt, J.M.: Linear-time recognition of map graphs with outerplanar witness. In: Proceedings of the 15th Scandinavian Symposium and Workshops on Algorithm Theory 2016 (SWAT 2016), article no. 5, pp. 5:1–5:14 (2016). http://www.dagstuhl.de/dagpub/978-3-95977-011-8

  23. Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Appl. Math. 54(1), 81–88 (1994). doi:10.1016/0166-218X(94)00023-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indagationes Math. 80(5), 406–424 (1977). doi:10.1016/1385-7258(77)90055-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, New York (1969)

    Google Scholar 

  26. Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monographs, Toronto (2003)

    Google Scholar 

  27. Thorup, M.: Map graphs in polynomial time. In: Proceedings of the 39th IEEE Symposium on Foundations of Computer Science 1998 (FOCS 1998), pp. 396–405 (1998). doi:10.1109/SFCS.1998.743490

Download references

Acknowledgment

We thank Hannes Steffenhagen for his careful reading and very helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Bang Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Le, HO., Le, V.B. (2017). Hardness and Structural Results for Half-Squares of Restricted Tree Convex Bipartite Graphs. In: Cao, Y., Chen, J. (eds) Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science(), vol 10392. Springer, Cham. https://doi.org/10.1007/978-3-319-62389-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62389-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62388-7

  • Online ISBN: 978-3-319-62389-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics