Skip to main content

Buckling of Conical Shells

  • Chapter
  • First Online:
Buckling and Postbuckling of Beams, Plates, and Shells

Part of the book series: Structural Integrity ((STIN,volume 1))

Abstract

Conical shells under the mechanical and thermal loads are considered in this chapter. The basic governing equations of the shell including the nonlinear strain-displacement relations of Sanders assumption, the constitutive law, the nonlinear equilibrium equations, and the linear stability equations are derived employing the variational principle. The stability of the shell is considered and the buckling loads associated with the mechanical and thermal forces are derived. In case of thermal loading, the material temperature dependency is considered and the results are compared with the case where temperature dependency of the material properties are ignored. Effect of the piezo-control on stability of conical shells under thermal loading concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill.

    MATH  Google Scholar 

  2. Eslami, M. R. (2010). Thermo-mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press.

    Google Scholar 

  3. Seide, P. (1956). Axisymmetric buckling of circular cones under axial compression. Journal of Applied Mechanics, 23, 625–628.

    MATH  MathSciNet  Google Scholar 

  4. Seide, P. (1961). Buckling of circular cones under axial compression. Journal of Applied Mechanics, 28, 315–326.

    Article  MathSciNet  Google Scholar 

  5. Singer, J. (1961). Buckling of circular conical shells under axisymmetrical external pressure. Journal of Mechanical Engineering Science, 3, 330–339.

    Article  Google Scholar 

  6. Baruch, M., & Singer, J. (1965). General instability of stiffened conical shells under hydrostatic pressure. Aero. Q., 26, 187–204.

    Article  Google Scholar 

  7. Baruch, M., Harari, O., & Singer, J. (1967). Influence of in-plane boundary conditions on the stability of conical shells under hyrostatic pressure. Israel Journal of Technology, 5(1–2), 12–24.

    Google Scholar 

  8. Baruch, M., Harari, O., & Singer, J. (1970). Low buckling loads of axially compressed conical shells. Journal of Applied Mechanics, 37, 384–392.

    Article  Google Scholar 

  9. Singer, J. (1962). Buckling of Orthotropic and Stiffened Conical Shells, NASA TN D-1510 (pp. 463–479).

    Google Scholar 

  10. Singer, J. (1963). Donnell-type equations for bending and buckling of orthotropic conical shells. Journal of Applied Mechanics, 30, 303–305.

    Article  MATH  Google Scholar 

  11. Weigarten, V. I., & Seide, P. (1965a). Elastic stability of thin walled cylindrical and conical shells under combined external pressure and axial compression. AIAA Journal, 3, 913–920.

    Article  Google Scholar 

  12. Weigarten, V. I., & Seide, P. (1965b). Elastic stability of thin walled cylindrical and conical shells under combined internal pressure and axial compression. AIAA Journal, 3, 1118–1125.

    Article  Google Scholar 

  13. Eslami, M. R., & Rafeeyan, M. (1996). Thermal and mechanical buckling of conical shells. In Proceedings of the 8th International Conference of Pressure Vessel Technology, Montreal, Canada.

    Google Scholar 

  14. Pandey, M. D., & Sherboune, A. N. (1991). Imperfection sensitivity of optimized laminated composite shells: a physical approach. International Journal of Solids and Structures, 27(12), 1575–1595.

    Article  Google Scholar 

  15. Palassopoulos, G. V. (1993). New approach to buckling of imperfection sensitive structures. Journal of Engineering Mechanics, 119(4), 850–869.

    Article  Google Scholar 

  16. Kasagi, A., & Sridharan, S. (1995). Imperfection sensitivity of layered composite cylinders. Journal of Engineering Mechanics, 121(7), 810–818.

    Article  Google Scholar 

  17. Naj, R., Sabzikar, M., & Eslami, M. R. (2008). Thermal and mechanical instability of functionally graded truncated conical shells. Thin-Walled Structures, 46(1), 65–78.

    Article  Google Scholar 

  18. Singer, J. (1965). Buckling of circular conical shells under uniform axial compression. AIAA Journal, 3(5), 985–987.

    Article  Google Scholar 

  19. Singer, J. (1962). The effect of axial constraint on the instability of thin conical shells under external pressure. Journal of Applied Mechanics, 29(1), 212–214.

    Article  MATH  Google Scholar 

  20. Lu, S. Y., & Chang, L. K. (1967). Thermal buckling of conical shells. AIAA Journal, 5(10), 1877–1882.

    Article  MATH  Google Scholar 

  21. Chang, L. K., & Lu, S. Y. (1968). Nonlinear thermal elastic buckling of conical shells. Nuclear Engineering and Design, 7(2), 159–169.

    Article  Google Scholar 

  22. Tani, J. (1978). Influence of axisymmetric initial deflections on the thermal buckling of truncated conical shells. Nuclear Engineering and Design, 48(2–3), 393–403.

    Article  Google Scholar 

  23. Tani, J. (1984). Buckling of truncated conical shells under combined pressure and heating. Journal of Thermal Stresses, 7(3–4), 307–316.

    Article  Google Scholar 

  24. Tani, J. (1985). Buckling of truncated conical shells under combined axial load, pressure, and heating. Journal of Applied Mechanics, 52(2), 402–708.

    Article  Google Scholar 

  25. Wu, C. P., & Chiu, S. J. (2001). Thermoelastic buckling of laminated composite conical shells. Journal of Thermal Stresses, 24(9), 881–901.

    Article  Google Scholar 

  26. Patel, B. P., Shukla, K. K., & Nath, Y. (2005). Thermal postbuckling analysis of laminated cross-ply truncated circular conical shells. Composite Structures, 71(1), 101–114.

    Article  Google Scholar 

  27. Patel, B. P., Shukla, K. K., & Nath, Y. (2006). Nonlinear thermoelastic stability characteristics of cross-ply laminated oval cylindrical/conical shells. Finite Elements in Analysis and Design, 42(12), 1061–1070.

    Article  Google Scholar 

  28. Roh, J. H., Woo, J. H., & Lee, I. (2009). Thermal post-buckling and vibration analysis of composite conical shell structures using layerwise theory. Journal of Thermal Stresses, 32(1–2), 41–64.

    Google Scholar 

  29. Singh, B. N., & Babu, J. B. (2009). Thermal buckling of laminated composite conical shell panel with and without piezoelectric layer with random material properties. International Journal of Crashworthiness, 14(1), 73–81.

    Article  Google Scholar 

  30. Singh, B. N., & Babu, J. B. (2009). Thermal buckling of laminated conical shells embedded with and without piezoelectric layer. Journal of Reinforced Plastics and Composites, 28(7), 731–812.

    Article  Google Scholar 

  31. Bhangale, R., Ganesan, N., & Padmanabhan, C.h. (2006). Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells. J Sound and Vibration, 292(1–2), 341–371.

    Google Scholar 

  32. Sofiyev, A. H. (2007). Thermoelastic stability of functionally graded truncated conical shells. Composite Structures, 77(1), 56–65.

    Article  Google Scholar 

  33. Sofiyev, A. H. (2011). Thermal buckling of FGM shells resting on a two-parameter elastic foundation. Thin-Walled Structure, 49(10), 1304–11.

    Article  MathSciNet  Google Scholar 

  34. Torabi, J., Kiani, Y., & Eslami, M. R. (2013). Linear thermal buckling analysis of truncated hybrid FGM conical shells. Composites Part B: Engineering, 50(1), 265–272.

    Article  Google Scholar 

  35. Akbari, M., Kiani, Y., Aghdam, M. M., & Eslami, M. R. (2014). Free vibration of FGM Lévy conical panels. Composite Structures, 116, 732746. doi.org/10.1016/j.compstruct.2014.05.052.

  36. Akbari, M., Kiani, Y., & Eslami, M. R. (2015). Thermal Buckling of temperature dependent FGM conical shells with arbitrary edge supports. Acta Mechanica, 226, 897915. doi:10.1007/s00707-014-1168-3.

    Article  MATH  MathSciNet  Google Scholar 

  37. Jabareen, M., & Sheinman, I. (2006). Postbuckling analysis of geometrically imperfect conical shells. Journal of Engineering Mechanics, 132(12), 1326–1334.

    Article  Google Scholar 

  38. Jabareen, M., & Sheinman, I. (2009). Stability of imperfect stiffened conical shells. International Journal of Solids and Structures, 46(10), 2111–2125.

    Article  MATH  Google Scholar 

  39. Sofiyev, A. H., Kuruoghlu, N., & Turkmen, M. (2009). Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure. Thin-Walled Structures, 47, 61–72.

    Article  Google Scholar 

  40. Sofiyev, A. H. (2009). The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure. Composite Structures, 89, 356–366.

    Article  Google Scholar 

  41. Sofiyev, A. H. (2010). The buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure. Composite Structures, 92, 488–498.

    Article  Google Scholar 

  42. Sofiyev, A. H. (2010). Buckling analysis of FGM circular shells under combined loads and resting on the Pasternak type elastic foundation. Mechanics Research Communications, 37, 539–544.

    Article  MATH  Google Scholar 

  43. Bich, D., Phoung, N., & Tung, H. (2012). Buckling of functionally graded conical panels under mechanical loads. Composite Structures, 94, 1379–84.

    Article  Google Scholar 

  44. Sofiyev, A. H. (2011). Influence of the initial imperfection on the non-linear buckling response of FGM truncated conical shells. International Journal of Mechanical Sciences, 53, 753–762.

    Article  Google Scholar 

  45. Sabzikar Boroujerdy, M., & Eslami, M. R. (2015). Unsymmetrical buckling of piezo-FGM shallow clamped spherical shells under thermal loading. Journal of Thermal Stresses, 38(11), 1290–1307.

    Article  Google Scholar 

  46. Wu, L., Jiang, Z., & Liu, J. (2005). Thermoelastic stability of functionally graded cylindrical shells. Composite Structures, 70, 60–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Eslami .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eslami, M.R. (2018). Buckling of Conical Shells. In: Buckling and Postbuckling of Beams, Plates, and Shells. Structural Integrity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-62368-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62368-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62367-2

  • Online ISBN: 978-3-319-62368-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics