Skip to main content

Buckling of Circular Cylindrical Shells

  • Chapter
  • First Online:
Buckling and Postbuckling of Beams, Plates, and Shells

Part of the book series: Structural Integrity ((STIN,volume 1))

Abstract

This chapter is devoted to the stability behavior of thin cylindrical shells. The basic governing equations of thin circular cylindrical shells employing the Donnell theory with the von-Karman geometrical non-linearity are derived. The nonlinear strain-displacement relations, the nonlinear equilibrium equations, and the linear stability equations are derived employing the variational formulations. The cylindrical shell under uniform compressive axial load is considered and the buckling load is obtained and given by closed form solution. Thermal buckling of cylindrical shell made of FGM for the uniform temperature rise, linear radial temperature, and the nonlinear radial temperature are presented and the effect of piezo-control is examined. Buckling and postbuckling of thin cylindrical shells with piezo-control under thermal loads is discussed and the chapter concludes with the stability discussion of cylindrical shells on elastic foundation. The buckling loads of cylindrical shells of isotropic/homogeneous material are derived by simply setting proper values for the power law index of the FG materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates and shells. New York: McGraw-Hill.

    MATH  Google Scholar 

  2. Eslami, M. R. (2010). Thermo-Mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press.

    Google Scholar 

  3. Hetnarski, R. B., & Eslami, M. R. (2009). Thermal stresses, advanced theory and applications. Berlin: Springer.

    Google Scholar 

  4. Eslami, M. R., Ziaii, A. R., & Ghorbanpour, A. (1996). Thermoelastic buckling of thin cylindrical shells based on improved Donnell equations. Journal of Thermal Stresses, 19, 299–316.

    Article  Google Scholar 

  5. Eslami, M. R., & Javaheri, R. (1999). Thermal and mechanical buckling of composite cylindrical shells. Journal of Thermal Stresses, 22(6), 527–545.

    Article  Google Scholar 

  6. Eslami, M. R., & Shariyat, M. (1999). A high-order theory for dynamic buckling and postbuckling analysis of laminated cylindrical shell. ASME Journal of Pressure Vessel Technology, 121, 94–102.

    Article  Google Scholar 

  7. Eslami, M. R., & Shariyat, M. (1999). June). Dynamic buckling and postbuckling of imperfect orthotropic cylindrical shells under mechanical and thermal loads, based on the three-dimensional theory of elasticity. Transactions of the ASME Journal of Applied Mechanics, 66, 476–484.

    Article  Google Scholar 

  8. Eslami, M. R., & Shariyat, M. (1996). November). Elastic, plastic, and creep buckling of imperfect cylinders under mechanical and thermal loading. Transactions of the ASME Journal of Pressure Vessel Technology, 118, 27–36.

    Article  Google Scholar 

  9. Eslami, M. R., & Shahsiah, R. (2001). Thermal buckling of imperfect cylindrical shells. Journala of Thermal Stresses, 24(1), 71–90.

    Article  Google Scholar 

  10. Birman, V., & Bert, C. W. (1993). Buckling and Post-buckling of composite plates and shells subjected to elevated temperature. Transactions of the ASME Journal of Applied Mechanics, 60, 514–519.

    Article  MATH  Google Scholar 

  11. Shen, H. S. (1997). Post buckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and axial compression. Computers and Structures, 63, 335–348.

    Article  MATH  Google Scholar 

  12. Shen, H. S. (1998). Postbuckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and thermal loading. International Journal of Mechanical Sciences, 40, 339–955.

    Article  MATH  Google Scholar 

  13. Shen, H. S. (1999). Thermomechanical postbuckling of composite laminated cylindrical shells with local geometric imperfections. International Journal of Solids and Structures, 36, 597–617.

    Article  MATH  Google Scholar 

  14. Iu, V. P., & Chia, C. Y. (1988). Effect of transverse shear on nonlinear vibration and postbuckling of anti-symmetric cross-ply imperfect cylindrical shells. International Journal of Mechanical Sciences, 30, 705–718.

    Article  MATH  Google Scholar 

  15. Reddy, J. N., & Savoia, M. (1992). Layer-wise shell theory for postbuckling of laminated circular cylindrical shells. AIAA Journal, 30, 2148–2154.

    Article  MATH  Google Scholar 

  16. Snead, J. M., & Palazotto, A. N. (1983). Moisture and temperature effects on the instability of cylindrical composite panels. Journal of Aircraft, 20, 777–783.

    Article  Google Scholar 

  17. Lee, S. Y., & Yen, W. J. (1989). Hygrothermal effects on the stability of a cylindrical composite shell panel. Computers and Structures, 33, 551–559.

    Article  MATH  Google Scholar 

  18. Palazotto, A. N., & Tisler, T. W. (1989). Experimental collapse determination of cylindrical composite panels with large cutouts under axial load. Composite Structures, 12, 61–78.

    Article  Google Scholar 

  19. Palazotto, A. N. (1988). An experimental study of a curved composite panel with a cutout. American Society for Testing and Materials, 972, 191–202.

    Google Scholar 

  20. Horban, B. A., & Palazotto, A. N. (1987). Experimental buckling of cylindrical composite panels with eccentrically located circular delaminations. Journal of Spacecraft and Rockets, 24, 349–352.

    Article  Google Scholar 

  21. Siefert, G. R., & Palazotto, A. N. (1986). The effect of a centrally located midplane delamination on the stability of composite panels. Experimental Mechanics, 26, 330–336.

    Article  Google Scholar 

  22. Dennis, S. T., & Palazotto, A. N. (1990). Large displacement and rotational formulation for laminated shells including parabolic transverse shear. International Journal of Nonlinear Mechanics, 25, 67–85.

    Article  MATH  Google Scholar 

  23. Dennis, S. T., & Palazotto, A. N. (1989). Transverse shear deformation in orthotropic cylindrical pressure vessels using a high-order shear theory. AIAA Journal, 27, 1441–1447.

    Article  MATH  Google Scholar 

  24. Tsai, C. T., Palazotto, A. N., & Dennis, S. T. (1991). Large rotation snap through buckling in laminated cylindrical panels. Finite Elements in Analysis and Design, 9, 65–75.

    Article  Google Scholar 

  25. Dennis, S. T., & Palazotto, A. N. (1993). Effect of nonlinear curvature strains on the buckling of laminated plates and shells. International Journal for Numerical Methods in Engineering, 36, 595–610.

    Article  MATH  Google Scholar 

  26. Schimmels, S. A., & Palazotto, A. N. (1994). Nonlinear geometric and material behavior of composite shells with large strains. Journal of Engineering Mechanics, 120, 320–345.

    Article  Google Scholar 

  27. Palazotto, A. N., Chien, L. S., & Taylor, W. W. (1992). Stability characteristics of laminated cylindrical panels under transverse loading. AIAA Journal, 30, 1649–1653.

    Article  Google Scholar 

  28. Chien, L. S., & Palazotto, A. N. (1992). Dynamic buckling of composite cylindrical panels with higher-order transverse shear subjected to a transverse concentrated load. International Journal of Nonlinear Mechanics, 27, 719–734.

    Article  Google Scholar 

  29. Schimmels, S. A., & Palazotto, A. N. (1992). Collapse characteristics of cylindrical panels under axial loads. AIAA Journal, 30, 1447–1466.

    Article  Google Scholar 

  30. Shen, H. S. (2000). Hygrothermal effects on the postbuckling of composite laminated cylindrical shells. Composite Science and Technology, 60, 1227–1240.

    Article  Google Scholar 

  31. Ng, T. Y., Lam, Y., k., Liew, K. M., & Reddy, J. N. (2001). Dynamic stability analysis of functionally graded cylindrical shell under periodic axial loading. International Journal of Solids and Structures, 38, 1295–1300.

    Google Scholar 

  32. Shahsiah, R., & Eslami, M. R. (2003). Thermal buckling of functionally graded cylindrical shell. Journal of Thermal Stresses, 26(3), 277–295.

    Article  Google Scholar 

  33. Shahsiah, R., & Eslami, M. R. (2003). Functionally graded cylindrical shell thermal buckling based on improved Donnell equations. AIAA Journal, 41(9), 1819–1826.

    Article  Google Scholar 

  34. Shahsiah, R., & Eslami, M. R. (2003, July). Axisymmetric mechanical buckling of functionally graded cylindrical shell based on timoshenko technique. In: Proceedings, ICPVT-10, Vienna University of Technology, Austria, July 7–10, 2003.

    Google Scholar 

  35. Bagherizadeh, E., Kiani, Y., & Eslami, M. R. (2011). Mechanical buckling of functionally graded material cylindrical shells surrounded by pasternak elastic foundation. Composite Structures, 93, 2063–2071.

    Article  Google Scholar 

  36. Shen, H. S. (2004). Thermal postbuckling behaviour of functionally graded cylindrical shells with temperature-dependent properties. International Journal of Solids and Structures, 41, 1961–1974.

    Article  MATH  Google Scholar 

  37. Donnell, L. H. (1934). A new theory for the buckling of thin cylinders under axial compression and bending. ASME Transactions, 56, 795–806.

    Google Scholar 

  38. Donnell, L. H., & Wan, C. C. (1950). Effect of imperfections on buckling of thin cylinders and columns under axial compression. Journal of Applied Mechanics, 17, 73–83.

    MATH  Google Scholar 

  39. Donnell, L. H. (1956). Effect of imperfections on buckling of thin cylinders under external pressure. Journal of Applied Mechanics, 23, 569–575.

    MATH  MathSciNet  Google Scholar 

  40. Tsouvalis, N. G., Zafeiratou, A. A., Papazoglou, V. J., Gabrielides, N. C., & Kaklis, P. D. (2001). Numerical modeling of composite laminated cylinders in compression using a novel imperfection modeling method. Composites, Part B: Engineering, 32, 387–399.

    Article  Google Scholar 

  41. Petreli, A. S., & Tsouvalis, N. G. (2001). A parametric study of the effect of geometric imperfections on the buckling behavior of composite laminated cylinders. In Proceeding of the HELLAS-COMP 2001, Second National Conference on Composite Materials, Patras, Greece, 2001.

    Google Scholar 

  42. Wunderlich, W., & Albertin, U. (2002). Buckling behavior of imperfect spherical shells. International Journal of Non-Linear Mechanics, 37, 589–604.

    Article  MATH  Google Scholar 

  43. Shahsiah, R., & Eslami, M. R. (2003). Thermal and mechanical buckling of imperfect spherical cap. Journal of Thermal Stresses, 26(7), 723–737.

    Article  Google Scholar 

  44. Mirzavand, B., Eslami, M. R., & Shahsiah, R. (2005). Effect of imperfections on thermal buckling of functionally graded cylindrical shells. AIAA Journal, 43(9), 2073–2076.

    Article  Google Scholar 

  45. Mirzavand, B., & Eslami, M. R. (2006). Thermal buckling of imperfect functionally graded cylindrical shells based on the Wan-Donnell model. Journal of Thermal Stresses, 29, 37–55.

    Article  Google Scholar 

  46. Mirzavand, B., & Eslami, M. R. (2005). Effect of imperfection on buckling of functionally graded cylindrical shells under axial compression. In Proceedings of the ISME Annual Conference, Isfahan, Iran, May 17–19, 2005.

    Google Scholar 

  47. Timoshenko, S. P., & Giere, J. M. (1961). Theory of Elastic Stability. New York: McGraw-Hill.

    Google Scholar 

  48. Shen, H. S. (2001). Postbuckling analysis of axially-loaded laminated cylindrical shells with piezoelectric actuators. European Journal of Mechanics - A/Solids, 20, 1007–1022.

    Article  MATH  Google Scholar 

  49. Shen, H. S. (2002). Thermal postbuckling analysis of laminated cylindrical shells with piezoelectric actuators. Composite Structures, 55, 13–22.

    Article  Google Scholar 

  50. Shen, H. S. (2002). Postbuckling of laminated cylindrical shells with piezoelectric actuators under combined external pressure and heating. International Journal of Solids and Structures, 39, 4271–4289.

    Article  MATH  Google Scholar 

  51. Shen, H. S., & Li, Q. S. (2002). Postbuckling of cross-ply laminated cylindrical shells with piezoelectric actuators under complex loading conditions. International Journal of Mechanical Sciences, 44, 1731–1754.

    Article  MATH  Google Scholar 

  52. Ganesan, N., & Kadoli, R. (2003). Buckling and dynamic analysis of piezothermoelastic composite cylindrical shell. Composite Structures, 59, 45–60.

    Article  Google Scholar 

  53. Correia, V. M. F., Soares, C. M. M., & Soares, C. A. M. (2003). Buckling optimization of composite laminated adaptive structures. Composite Structures, 62, 315–321.

    Article  Google Scholar 

  54. Shen, H. S. (2002). Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments. Composites Science and Technology, 65, 16751690.

    Google Scholar 

  55. Mirzavand, B., & Eslami, M. R. (2007). Thermal buckling of simply supported piezoelectric FGM cylindrical shells. Journal of Thermal Stresses, 30(11), 1117–1135.

    Article  Google Scholar 

  56. Sofiyev, A. H. (2003). Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mechanica, 165, 151163.

    Article  MATH  Google Scholar 

  57. Sofiyev, A. H., & Schnack, E. (2004). The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading. Engineering Structures, 26(10), 1321–1331.

    Article  Google Scholar 

  58. Shariyat, M. (2008). Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. International Journal of Mechanical Sciences, 50(12), 1561–1571.

    Article  Google Scholar 

  59. Mirzavand, B., Eslami, M. R., & Shakeri, M. (2010). Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells. Journal of Thermal Stresses, 33(7), 646–660.

    Article  Google Scholar 

  60. Correia, I. F. P., Mota Soares, C. M., Mota Soares, C. A., & Herskovits, J. (2004). Analysis of adaptive shell structures using a refined laminated model. Composite Structures, 66, 261–268.

    Article  Google Scholar 

  61. Mirzavand, B., Eslami, M. R., & Reddy, J. N. (2013). Dynamic thermal postbuckling analysis of shear deformable piezoelectric-FGM cylindrical shells. Journal of Thermal Stresses, 36, 189–206. doi:10.1080/01495739.2013.768443.

    Article  Google Scholar 

  62. Gilat, R., Feldman, E., & Aboudi, J. (1993). Axisymmetric response of nonlinearly elastic cylindrical shells to dynamic axial loads. International Journal of Impact Engineering, 13(4), 545–554.

    Article  Google Scholar 

  63. Jones, R. M. (2006). Buckling of bars, plates, and shells. Blacksburg, Virginia: Bull Ridge.

    Google Scholar 

  64. Budiansky, B. (1970). Thermal and thermoelastic properties of isotropic composites. Journal of Composite Materials, 4, 286295.

    Article  Google Scholar 

  65. Touloukian, Y. S. (1967). Thermophysical properties of high temperature solid materials. New York: MacMillan.

    Google Scholar 

  66. Xu, K., Noor, A. K., & Tang, Y. Y. (1995). Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates. Computer Methods in Applied Mechanics and Engineering, 126, 355–371.

    Article  Google Scholar 

  67. Sheng, G. G., & Wang, X. (2008). Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium. Journal of Reinforced Plastics and Composites, 27(1), 17–34.

    Google Scholar 

  68. Shen, H. S. (2009). Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. International Journal of Mechanical Sciences, 51, 372–383.

    Article  Google Scholar 

  69. Shen, H. S., Yang, J., & Kitipornchai, S. (2010). Postbuckling of internal pressure loaded FGM cylindrical shells surrounded by an elastic medium. European Journal of Mechanics A/Solids, 29, 448–460.

    Article  Google Scholar 

  70. Luo, Y. F., & Teng, J. G. (1998). Stability analysis of shells of revolution on nonlinear elastic foundations. Journal of Computers and Structures, 69, 499–511.

    Article  MATH  Google Scholar 

  71. Golovko, K. G., Lugovoi, P. Z., & Meish, V. F. (2007). Solution of axisymmetric dynamics problems for cylindrical shells on an elastic foundation. International Applied Mechanics, 43(12), 1390–1395.

    Article  Google Scholar 

  72. Paliwal, D. N., & Pandey, R. K. (1996). Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations. Journal of Pressure Vessels and Piping, 69, 79–89.

    Article  Google Scholar 

  73. Tj, H. G., Mikami, T., Kanie, S., & Sato, N. (2006). Free vibration characteristics of cylindrical shells partially buried in elastic foundations. Journal of Sound and Vibration, 290, 785–793.

    Article  Google Scholar 

  74. Shah, A. G., Mahmood, T., Naeem, N. N., Iqbal, Z., & Arshad, S. H. (2010). Vibrations of functionally graded cylindrical shells based on elastic foundations. Acta Mechanica, 211(3), 293–307.

    Article  MATH  Google Scholar 

  75. Mirzavand, B., & Eslami, M. R. (2008). Thermoelastic stability analysis of imperfect functionally graded cylindrical shells. Journal of Mechanics of Materials and Structures, 3(8), 1561–1572.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Eslami .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eslami, M.R. (2018). Buckling of Circular Cylindrical Shells. In: Buckling and Postbuckling of Beams, Plates, and Shells. Structural Integrity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-62368-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62368-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62367-2

  • Online ISBN: 978-3-319-62368-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics