Skip to main content

Buckling and Post-buckling of Curved Beams and Rings

  • Chapter
  • First Online:
Buckling and Postbuckling of Beams, Plates, and Shells

Part of the book series: Structural Integrity ((STIN,volume 1))

  • 2442 Accesses

Abstract

The buckling and post-buckling of curved beams under mechanical distributed and concentrated loads and thermal loads with different types of boundary conditions are discussed in detail in this chapter. The existence of bifurcation points are examined for each type of loading. For those cases that bifurcation do not occur, the limit load is discussed. The chapter ends with the discussion of buckling and post-buckling of rings under hydrostatic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pi, Y. L., & Bradford, M. A. (2010). Effects of prebuckling analyses on determining buckling loads of pin-ended circular arches. Mechanics Research Communications, 37(6), 545–553.

    Article  MATH  Google Scholar 

  2. Simitses, G. J., & Hodges, D. H. (2006). Fundamentals of structural stability. Amsterdam: Elsevier.

    MATH  Google Scholar 

  3. Pi, Y. L., & Trahair, N. S. (1998). Nonlinear buckling and post-buckling of elastic arches. Engineering Structures, 20(7), 571–579.

    Article  Google Scholar 

  4. Hodges, D. H. (1999). Non-linear in-plane deformation and buckling of rings and high arches. International Journal of Non-Linear Mechanics, 34(4), 723–737.

    Article  MATH  Google Scholar 

  5. Pi, Y. L., & Bradford, M. A. (2002). In-plane stability of arches. International Journal of Solids and Structures, 39(1), 105–125.

    Article  MATH  Google Scholar 

  6. Rubin, M. B. (2004). Buckling of elastic shallow arches using the theory of a cosserat point. Journal of Engineering Mechanics, 130(2), 216–224.

    Article  Google Scholar 

  7. Moon, J., Yoon, K. Y., Lee, T. H., & Lee, H. E. (2007). In-plane elastic buckling of pin-ended shallow parabolic arches. Engineering Structures, 29(10), 2611–2617.

    Article  Google Scholar 

  8. Gengshu, T., Pi, Y., Bradford, M., & Tin-Loi, F. (2008). In-plane nonlinear buckling analysis of deep circular arches incorporating transverse stresses. Journal of Engineering Mechanics, 134(5), 362–373.

    Article  Google Scholar 

  9. Davids, W. G. (2009). In-plane load-deflection behavior and buckling of pressurized fabric arches. Journal of Structural Engineering, 135(11), 1320–1329.

    Article  Google Scholar 

  10. Moghaddasie, B., & Stanciulescu, I. (2013). Equilibria and stability boundaries of shallow arches under static loading in a thermal environment. International Journal of Non-Linear Mechanics, 51(1), 132–144.

    Article  Google Scholar 

  11. Eslami, M. R., Hetnarski, R. B., Ignaczak, J., Noda, N., Sumi, N., & Tanigawa, Y. (2013). Theory of elasticity and thermal stresses. Berlin: Springer.

    Book  MATH  Google Scholar 

  12. Zhao, F. Q., Wang, Z. M., & Liu, H. Z. (2007). Thermal post-bunkling analyses of functionally graded material rod. Applied Mathematics and Mechanics (English Edition), 28(1), 59–67.

    Article  MATH  Google Scholar 

  13. Anandrao, K. S., Gupta, R. K., Ramchandran, P., & Rao, G. V. (2010). Thermal post-buckling analysis of uniform slender functionally graded material beams. Structural Engineering and Mechanics, 36(5), 545–560.

    Article  Google Scholar 

  14. Ma, L. S., & Lee, D. W. (2013). Exact solutions for non-linear static responses of a shear deformable FGM beam under an in-plane thermal loading. European Journal of Mechanics A/Solids, 31(1), 13–20.

    Article  MATH  Google Scholar 

  15. Li, S. R., Zhang, J. H., & Zhao, Y. G. (2006). Thermal post-buckling of functionally graded material timoshenko beams. Applied Mathematics and Mechanics (English Edition), 27(6), 803–810.

    Article  MATH  Google Scholar 

  16. Esfahani, S. E., Kiani, Y., & Eslami, M. R. (2013). Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. International Journal of Mechanical Sciences, 69(1), 10–20.

    Article  Google Scholar 

  17. Komijani, M., Kiani, Y., Esfahani, S. E., & Eslami, M. R. (2013). Vibration of thermo-electrically post-buckled functionally graded piezoelectric actuators. Composite Structures, 98(1), 143–152.

    Article  Google Scholar 

  18. Esfahani, S. E., Kiani, Y., Komijani, M., & Eslami, M. R. (2014). Vibration of a temperature-dependent thermally pre/post-buckled FGM beam over a non-linear hardening elastic foundations. Journal of Applied Mechanics; ASME transaction, 81(1), 011004.

    Article  Google Scholar 

  19. Komijani, M., Kiani, Y., & Eslami, M. R. (2013). Non-linear thermo-electrical stability analysis of functionally graded piezoelectric material beams. Journal of Intelligent Material Systems and Structures, 24(4), 399–410.

    Article  Google Scholar 

  20. Kargani, A., Kiani, Y., & Eslami, M. R. (2013). Exact solution for non-linear stability of piezoelectric FGM timoshenko beams under thermo-electrical loads. Journal of Thermal Stresses, 36(10), 1056–1076.

    Article  Google Scholar 

  21. Shafiee, H., Naii, M. H., & Eslami, M. R. (2006). In-plane and out-of-plane buckling of arches made of FGM. International Journal of Mechanical Sciences, 48(8), 907–915.

    Article  MATH  Google Scholar 

  22. Bateni, M., & Eslami, M. R. (2015). Nonlinear in-plane stability analysis of FG circular shallow arches under uniform radial pressure. Thin-Walled Structures, 94, 302313. https://doi.org/10.1016/j.tws.2015.04.019.

  23. Wicks, P. J. (1991). General equations for buckling of thin, shallow arches of any shape. Journal of Engineering Mechanics, 117(2), 225–240.

    Article  Google Scholar 

  24. Bateni, M., & Eslami, M. R. (2014). Non-linear in-plane stability analysis of FGM circular shallow arches under central concentrated force. International Journal of Nonlinear Mechanics, 60, 5869. https://doi.org/10.1016/j.ijnonlinmec.2014.01.001.

  25. Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability. New York: McGraw-Hill.

    Google Scholar 

  26. Asgari, A. H., Bateni, M., Kiani, Y., & Eslami, M. R. (2014). Nonlinear thermo-elastic and buckling analysis of FGM shallow arches. Composite Structures, 109, 75–85. https://doi.org/10.1016/j.compstruct.2013.10.045.

  27. Reddy, J. N. (2003). Mechanics of laminated composite plates and shells, theory and application. Boca Raton: CRC Press.

    Google Scholar 

  28. Reddy, J. N. (2002). Energy principles and variational methods in applied mechanics. New York: Wiley.

    Google Scholar 

  29. Brush, D. O., & Almorth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill.

    Google Scholar 

  30. Kiani, Y., Bagherizadeh, E., & Eslami, M. R. (2011). Thermal buckling of clamped thin rectangular FGM plates resting on pasternak elastic foundation (Three approximate analytical solutions). ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 91(7), 581–593.

    Article  MATH  MathSciNet  Google Scholar 

  31. Djondjorov, P. A., Vassilev, V. M., & Mladenov, I. M. (2011). Analytic description and explicit parametrisation of the equilibrium shapes of elastic rings and tubes under uniform hydrostatic pressure. International Journal of Mechanical Sciences, 53(5), 355–364.

    Article  MATH  Google Scholar 

  32. Smith, C. V., & Simitses, G. J. (1969). Effect of shear and load behavior on ring stability. Journal of Engineering Mechanics, 95(3), 559–569.

    Google Scholar 

  33. Carrier, G. F. (1947). On the buckling of elastic rings. Journal of Mathematical and Physics, 26(1), 94–103.

    Article  MATH  MathSciNet  Google Scholar 

  34. Tadjbakhsh, I., & Odeh, F. (1967). Equilibrium states of elastic rings. Journal of Mathematical Analysis and Application, 18(1), 59–74.

    Article  MATH  MathSciNet  Google Scholar 

  35. Naschie, M. S. El. (1975). The initial post-buckling of an extensional ring under external pressure. International Journal of Mechanical Sciences, 17(6), 387–388.

    Google Scholar 

  36. Naschie, M. S. El., & Nashai, Amr El. (1976). Influence of loading behavior on the postbuckling of circular rings. AIAA Journal, 14(2), 266–267.

    Google Scholar 

  37. Sills, L. B., & Budiansky, B. (1978). Postbuckling ring analysis. Journal of Applied Mechanics, 45(3), 208–210.

    Article  MATH  Google Scholar 

  38. Thurston, G.A. (1989). Application of Newtons method to postbuckling of rings under pressure loadings. NASA Technical Report, No. 2941.

    Google Scholar 

  39. Kyriakides, S., & Babcock, C. D. (1981). Large deflection collapse analysis of an inelastic inextensional rings under external pressure. International Journal of Solids and Structures, 17(10), 981–993.

    Article  MATH  Google Scholar 

  40. Kim, D., & Chaudhuri, R. A. (2006). Postbuckling of moderately thick imperfect rings under external pressure. Journal of Engineering Mechanics, 132(11), 1273–1276.

    Article  Google Scholar 

  41. Wu, B., Yu, Y., & Li, Z. (2007). Analytical approximations to large post-buckling deformation of elastic rings under uniform hydrostatic pressure. International Journal of Mechanical Sciences, 49(6), 661–668.

    Article  Google Scholar 

  42. Kerdegarbakhsh, M., Kiani, Y., Esfahani, S. E., & Eslami, M. R. (2014). Postbuckling of FGM rings. International Journal of Mechanical Sciences, 85, 187195. https://doi.org/10.1016/j.ijmecsci.2014.05.021.

  43. Huang, C. S., Nieh, K. Y., & Yang, M. C. (2003). In-plane free vibration and stability of loaded and shear-deformable circular arches. International Journal of Solids and Structures, 40(22), 5865–5885.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Eslami .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eslami, M.R. (2018). Buckling and Post-buckling of Curved Beams and Rings. In: Buckling and Postbuckling of Beams, Plates, and Shells. Structural Integrity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-62368-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62368-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62367-2

  • Online ISBN: 978-3-319-62368-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics