Skip to main content

Consumer Segmentation Through Multi-instance Clustering Time-Series Energy Data from Smart Meters

  • Chapter
  • First Online:
Soft Computing for Sustainability Science

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 358))

Abstract

With the rollout of smart metering infrastructure at large scale, demand-response programs may now be tailored based on consumption and production patterns mined from sensed data. In previous works, groups of similar energy consumption profiles were obtained. But, discovering typical consumption profiles is not enough, it is also important to reveal various preferences, behaviors and characteristics of individual consumers. However, the current approaches cannot determine clusters of similar consumer or prosumer households. To tackle this issue, we propose to model the consumer clustering problem as a multi-instance clustering problem and we apply a multi-instance clustering algorithm to solve it. We model a consumer as a bag and each bag consists of instances, where each instance will represent a day or a month of consumption. Internal indices were used for evaluating our clustering process. The obtained results are general applicable, and will be useful in a general business analytics context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is called prosumer to those consumers who have installed solar panels and therefore, also they produce energy that can consume or put on the power grid; thus they produced and consumed, hence the name prosumer.

  2. 2.

    http://www.eandis.be.

References

  1. Aghabozorgi, S., Ying Wah, T., Herawan, T., Jalab, H.A., Shaygan, M.A., Jalali, A.: A hybrid algorithm for clustering of time series data based on affinity search technique. Sci. World J. 2014, 562194 (2014)

    Article  Google Scholar 

  2. Albert, A., Rajagopal, R.: Smart meter driven segmentation: what your consumption says about you. IEEE Trans. Power Syst. 28(4), 4019–4030 (2013)

    Article  Google Scholar 

  3. Alkhansari, M.G., Huang, T.S.: Fractal-based image and video coding. Video Coding, pp. 265–303. Springer, Berlin (1996)

    Chapter  Google Scholar 

  4. Alzate, C., Espinoza, M., De Moor, B., Suykens, J.A.K.: Identifying customer profiles in power load time series using spectral clustering. In: Artificial Neural Networks - ICANN, 2009, vol. 5769, pp. 315–324. LNCS (2009)

    Google Scholar 

  5. Arco, L., Casas, G., Nowé, A.: Two-level clustering methodology for smart metering data. In Fifth International Workshop on Knowledge Discovery, Knowledge Management and Decision Making, (2015)

    Google Scholar 

  6. Ardakanian, O., Koochakzadeh, N., Singh, R.P., Golab, L., Keshav, S.: Computing Electricity Consumption Profiles from Household Smart Meter Data. In: EDBT Workshop on Energy Data Management, pp. 140–147 (2014)

    Google Scholar 

  7. Ball, G.H., Hall, D.J.: ISODATA, a novel method of data analysis and pattern classification. DTIC Document (1965)

    Google Scholar 

  8. Binh, P.T.T., Ha, N.H., Tuan, T.C., Khoa, L.D.: Determination of representative load curve based on Fuzzy K-Means. In: The 4th International Conference on Power Engineering and Optimization, no. Lc, pp. 281–286 (2010)

    Google Scholar 

  9. Blockeel, H., Page, D., Srinivasan, A.: Multi-instance tree learning. In: Proceedings of the 22nd international Conference on Machine Learning, pp. 57–64 (2005)

    Google Scholar 

  10. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer Texts in Statistics, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  11. Brunner, H., De Nigris, M., Gallo, A.D., Herold, I., Hribernik, W., Karg, L., Koivuranta, K., Papič, I., Lopes, J.P., Verboven, P.: Mapping & gap analysis of current European smart grids projects, p. 55, April 2012

    Google Scholar 

  12. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Methods 3(1), 1–27 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, H.A., Beckel, C., Staake, T.: Are domestic load profiles stable over time? An attempt to identify target households for demand side management campaigns. In: 39th Annual Conference of the IEEE Industrial Electronics Society (IECON 2013), pp. 4733–4738 (2013)

    Google Scholar 

  14. Chen, Y., Bi, J., Wang, J.Z.: MILES: multiple-instance learning via embedded instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1931–1947 (2006)

    Article  Google Scholar 

  15. Chicco, G.: Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 42(1), 68–80 (2012)

    Article  Google Scholar 

  16. Dent, I., Aickelin, U., Rodden, T.: Application of a clustering framework to UK domestic electricity data. In: UKCI 2011, 161–166 (2011)

    Google Scholar 

  17. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 1(89), 31–71 (1997)

    Article  MATH  Google Scholar 

  18. Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 3(7), 1–21 (2002)

    Article  Google Scholar 

  19. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Espinoza, M., Joye, C., Belmans, R., DeMoor, B.: Short-term load forecasting, profile identification, and customer segmentation: a methodology based on periodic time series. IEEE Trans. Power Syst. 20(3), 1622–1630 (2005)

    Article  Google Scholar 

  21. European Commission.: Benchmarking smart metering deployment in the EU-27 with a focus on electricity (2014)

    Google Scholar 

  22. European Commission: Cost-benefit analyses & state of play smart metering deployment in the EU-27, pp. 1–8 (2014)

    Google Scholar 

  23. Figueiredo, V., Rodrigues, F., Vale, Z., Gouveia, J.B.: An electric energy consumer characterization framework based on data mining techniques. IEEE Trans. Power Syst. 20(2), 596–602 (2005)

    Article  Google Scholar 

  24. Flath, C., Nicolay, D., Conte, T., Van Dinther, C., Filipova-Neumann, L.: Cluster analysis of smart metering data: an implementation in practice. Bus. Inf. Syst. Eng. 4, 31–39 (2012)

    Article  Google Scholar 

  25. Giordano, V., Gangale, F., Jrc-ie, G.F., Sánchez, M., Dg, J., Onyeji, I., Colta, A., Papaioannou, I., Mengolini, A., Alecu, C., Ojala, T., Maschio, I.: Smart grid projects in Europe?: lessons learned and current developments. Europe 2011, 1–118 (2011)

    Google Scholar 

  26. Hossain, J., Kabir, A.N.M.E., Rahman, M., Kabir, B., Islam, R.: Determination of typical load profile of consumers using fuzzy C-means clustering algorithm. Int. J. Soft Comput. Eng. 1(5), 169–173 (2011)

    Google Scholar 

  27. Hübner, M., Prüggler, N.: Smart Grids Initiatives in Europe - Country Snapshots and Country Fact Sheets. Framework, (2011)

    Google Scholar 

  28. Iglesias, F., Kastner, W.: Analysis of similarity measures in times series clustering for the discovery of building energy patterns. Energies 6, 579–597 (2013)

    Article  Google Scholar 

  29. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kriegel, H., Pryakhin, A., Schubert, M.: An EM-Approach for Clustering Multi-Instance Objects (2006)

    Google Scholar 

  31. Kriegel, H.-P., Schubert, M.: Classification of websites as sets of feature vectors. In: Databases and Applications, pp. 127–132 (2004)

    Google Scholar 

  32. Lai, C.-P., Chung, P.-C., Tseng, V.S.: A novel two-level clustering method for time series data analysis. Expert Syst. Appl. 37(9), 6319–6326 (2010)

    Article  Google Scholar 

  33. Lavin, A., Klabjan, D.: Clustering time - series energy data from smart meters. Energy Effic. 8(4), 681–689 (2014)

    Article  Google Scholar 

  34. Lee, T.E., Haben, S.A., Grindrod, P.: Modelling the electricity consumption of small to medium enterprises. In: The 18th European Conference on Mathematics for Industry Conference, pp. 1–7 (2014)

    Google Scholar 

  35. Liao, T.W.: A clustering procedure for exploratory mining of vector time series. Pattern Recognit. 40, 2550–2562 (2007)

    Article  MATH  Google Scholar 

  36. Losa, I., De Nigris, M., Van, T.: Analysis of the on-going Research and demonstration efforts on smart grids in Europe. 22nd International Conference on Electricity Distribution, pp. 10–13, June 2013

    Google Scholar 

  37. Lumpur, K.: Incremental clustering of time-series by fuzzy clustering. J. Inf. Sci. Eng. 688, 671–688 (2012)

    MathSciNet  Google Scholar 

  38. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  39. McLoughlin, F., Duffy, A., Conlon, M.: Analysing domestic electricity smart metering data using self organising maps. In: Integration of Renewables into the Distribution Grid, CIRED. Workshop, 2012, 1–4 (2012)

    Google Scholar 

  40. Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2), 159–179 (1985)

    Article  Google Scholar 

  41. Mutanen, A., Ruska, M., Repo, S., Järventausta, P.: Customer classification and load profiling method for distribution systems. IEEE Trans. Power Deliv. 26, 1755–1763 (2011)

    Article  Google Scholar 

  42. Oates, T., Firoiu, L., Cohen, P.R.: Clustering time series with hidden Markov models and dynamic time warping. In: Proceedings of the IJCAI-99 Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning, pp. 17–21 (1999)

    Google Scholar 

  43. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recognit. 37(3), 487–501 (2004)

    Article  MATH  Google Scholar 

  44. Rahmani, R., Goldman, S.A.: MISSL: multiple-instance semi-supervised learning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 705–712 (2006)

    Google Scholar 

  45. Räsänen, T., Kolehmainen, M.: Feature-based clustering for electricity use time series data. In: 9th International Conference, ICANNGA: 2009, vol. 5495, 401–412. LNCS, (2009)

    Google Scholar 

  46. Räsänen, T., Voukantsis, D., Niska, H., Karatzas, K., Kolehmainen, M.: Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data. Appl. Energy 87, 3538–3545 (2010)

    Article  Google Scholar 

  47. Renner, S., Heinemann, C.: European smart metering landscape report. Imprint 2, 1–168 (2011)

    Google Scholar 

  48. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  49. Thalamuthu, A., Mukhopadhyay, I., Zheng, X., Tseng, G.C.: Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics 22(19), 2405–2412 (2006)

    Article  Google Scholar 

  50. Wijaya, T.K., Ganu, T., Chakraborty, D., Aberer, K., Seetharam, D.P.: Consumer segmentation and knowledge extraction from smart meter and survey data. In: SDM 2014, (2014)

    Google Scholar 

  51. Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Advances in Neural Information Processing Systems, pp. 1537–1544 (2004)

    Google Scholar 

  52. Zhang, Q., Goldman, S.A.: EM-DD: An improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems, pp. 1073–1080 (2001)

    Google Scholar 

  53. Zhang, D., Wang, F., Si, L., Li, T., Lafayette, W., Science, C., Lafayette, W., Sciences, I.: M3IC: Maximum Margin Multiple Instance Clustering. In: International Joint Conference on Artifical Intelligence, pp. 1339–1344 (2003)

    Google Scholar 

  54. Zhang, X., Liu, J., Du, Y., Lv, T.: A novel clustering method on time series data. Expert Syst. Appl. 38, 11891–11900 (2011)

    Article  Google Scholar 

  55. Zhang, M.L., Zhou, Z.H.: Multi-instance clustering with applications to multi-instance prediction. Appl. Intell. 31(1), 47–68 (2009)

    Article  Google Scholar 

  56. Zhou, Z.-H., Sun, Y.-Y., Li, Y.-F.: Multi-instance learning by treating instances as non-iid samples. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1249–1256 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Gómez-Boix or Leticia Arco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gómez-Boix, A., Arco, L., Nowé, A. (2018). Consumer Segmentation Through Multi-instance Clustering Time-Series Energy Data from Smart Meters. In: Cruz Corona, C. (eds) Soft Computing for Sustainability Science. Studies in Fuzziness and Soft Computing, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-319-62359-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62359-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62358-0

  • Online ISBN: 978-3-319-62359-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics